What can in-memory computing deliver, and what are the barriers?

Naveen Verma (<u>nverma@princeton.edu)</u>, L.-Y. Chen, H. Jia, M. Ozatay, Y. Tang, H. Valavi, B. Zhang, J. Zhang

June 16, 2019

The memory wall

Separating memory from compute fundamentally raises a communication cost

More data \rightarrow bigger array \rightarrow larger comm. distance \rightarrow more comm. energy

So, we should amortize data movement

- Reuse accessed data for compute operations
- Specialized (memory-compute integrated) architectures

In-memory computing (IMC)

$$\vec{c} = A\vec{b} \quad \Rightarrow \quad \begin{bmatrix} c_1 \\ \vdots \\ c_M \end{bmatrix} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,N} \\ \vdots & \ddots & \vdots \\ a_{M,1} & \cdots & a_{M,N} \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix}$$

- In SRAM mode, matrix A stored in bit cells <u>row-by-row</u>
- In IMC mode, many WLs driven simultaneously

 \rightarrow amortize comm. cost inside array

- Can apply to diff. mem. Technologies → enhanced scalability
 - \rightarrow embedded non-volatility

[J. Zhang, VLSI'16][J. Zhang, JSSC'17]

The basic tradeoffs

<u>CONSIDER</u>: Accessing *D* bits of data associated with computation, from array with \sqrt{D} columns $\times \sqrt{D}$ rows.

IMC	
Memory &	
Computatio	n
(<i>D</i> ^{1/2} × <i>D</i> ^{1/2} arra	y)

Metric	Traditional	In-memory
Bandwidth	$1/D^{1/2}$	1
Latency	D	1
Energy	$D^{3/2}$	~D
SNR	1	~1/D ^{1/2}

- IMC benefits energy/delay at cost of SNR
- SNR-focused systems design is critical (circuits, architectures, algorithms)

Second-order stuff...

Single-row Read:
 $E_{RD} = E_{PRE} + E_{WL} + N \times E_{BL,RD} + \log K \times E_{MUX} + E_{SA}/K + E_{BLOCK}$ SRAM:
 $E_{A-RD} = \sqrt{D} \times E_{RD} = \sqrt{D} \times E_{PRE} + \sqrt{D} \times E_{WL} + \sqrt{D} \times N \times E_{BL,RD} + \sqrt{D} \times \log K \times E_{MUX} + \sqrt{D} \times E_{SA}/K + \sqrt{D} \times E_{BLOCK}$ IMC:
 $E_{F-RD} = E_{PRE} + M \times E_{WL,F-RD} + N \times E_{BL,F-RD} + E_{ACQ}/K + E_{BLOCK}$ Comparing the second state of the second state o

IMC Gains:

$$\frac{E_{A-RD}}{E_{F-RD}} \approx \frac{\sqrt{D} \times E_{WL} + \sqrt{D} \times N \times E_{BL,RD}}{M \times E_{WL,F-RD} + N \times E_{BL,F-RD}} = \frac{\sqrt{D} \times E_{WL} + D \times E_{BL,RD}}{\sqrt{D} \times E_{WL,F-RD} + \sqrt{D} \times E_{BL,F-RD}} \quad (N = M = \sqrt{D})$$

- IMC reduces $E_{BL,RD}/E_{BL,F-RD}$ operations, but not E_{WL}
- Usually $E_{BL,F-RD} > E_{BL,RD}$, sometimes $E_{WL,F-RD} < E_{WL,RD}$ 6

IMC as a spatial architecture

Data Movement:

- 1. $b_{n,k}'s$ broadcast min. distance2. (Many) $a_{m,n}'s$ stationary
due to high-density bit cellsin high-density bit cells
- 3. High-dynamic-range analog $c_{m,k}$'s computed in distributed manner

IMC as a spatial architecture

Assume:

- 1k dimensionality
- 4-b multiplies
- 45nm CMOS

Operation	Digital-PE Energy (fJ)	Bit-cell Energy (fJ)
Storage	250	
Multiplication	100	50
Accumulation	200	
Communication	40	5
Total	590	55

Where does IMC stand today?

Limited scale, robustness, configurability

IMC challenge (1): analog computation

Need analog to 'fit' compute in bit cells (SNR limited by analog non-idealities)
 → Must be feasible/competitive @ 16/12/7nm

[R. Sarpeshkar, Ultra Low Power Bioelectronic]

IMC Challenge (2): heterogeneity

Matrix-vector multiply is only 70-90% of operations
 → IMC must integrate in programmable, heterogenous architectures

IMC Challenge (3): efficient application mappings

IMC engines must be 'virtualized'

- \rightarrow IMC amortizes MVM costs, not weight loading. But...
- \rightarrow Need new mapping algorithms (physical tradeoffs very diff. than digital engines)

Activation Accessing

- E_{DRAM→IMC}/4-bit: 40pJ
- Reuse: $N \times I \times J$ (10-20 lyrs)
- E_{MAC,4-b}: 50fJ

Weight Accessing

- E_{DRAM→IMC}/4-bit: 40pJ
- Reuse: *X*×*Y*
- E_{MAC,4-b}:50fJ

Neural-network trend (1): reducing bit precision

Neural-network trend (2): varied models

E.g., Flow sculpting [D. Stoecklein, Nature'17]

E.g., Long-Short-Term Memory (LSTM)

Neural-network trend (3): diverse use cases & pipelines

[L. Wang, CVPR 2015]

\rightarrow Diverse pipelines, diverse batch sizes, varying latency requirements

<u>Neural-network trend (4):</u> model compression, etc.

SNR of analog compute (SRAM)

SNR of analog compute (MRAM)

SNR of analog compute (ReRAM)

ReRAM in 16nm FinFET (TSMC):

(similar cell density to SRAM)

[H. W. Pan, IEDM'15]

Algorithmic co-design: chip specific AdaBoost

Error-Adaptive Classifier Boosting (EACB)

[Z. Wang, TVLSI'15][Z. Wang, TCAS-I'15]

[J. Zhang, VLSI'16][J. Zhang, JSSC'17]

Boosted-linear classifier demonstration

MNIST Image Classification:

CHIP SUMMARY			
Technology	130 nm	Speed:	50MHz
SRAM Size	128 × 128 bits	Accuracy (81 feat.)	90% (18 iter.)
Bit cell Size	1.26 μm × 3.44 μm	Energy saving	12 ×
Energy / 10-way Class.	633.4 pJ	Feature Resolution	5b

[J. Zhang,²¹VLSI'16]

Algorithmic co-design: chip-specific DNN

Embedded weight tuning

Adapt to chip & application variations

Algorithmic co-design: chip-generalized BNN

MRAM-based BNN simulations (CIFAR-10 classification)

High-SNR analog computing

Charge-domain in-memory computing

High-density/stability multiplying bit cell (M-BC)

•

 $\sigma = 0.13\%$ $\sigma = 0.13\%$ **B1 C1** 2fF: 20 -0.5 -0.5 ο ΔC/C (%) 0.5 -1 0 ∆C/C (%) 0.5 **B2** $\sigma = 0.20\%$ **C2** $\sigma = 0.13\%$ 1fF: 10 -0.5 0.5 -0.5 0 ΔC/C (%) 0 ΔC/C (%) 0.5 -1 -1 $\sigma = 0.30\%$ $\sigma = 0.15\%$ **B3 C3** 0.5fF: 20 10 10 [H. Omran, TCAS-I'16] -0.5 -0.5 0.5 -1 ΔC/C (%) 0.5 -1 ΔC/C (%) IMC analysis – 10,000's of rows possible

MOM-capacitor matching (130nm):

2.4Mb, 64-tile IMC

	Moons, ISSCC'17	Bang, ISSCC'17	Ando, VLSI'17	Bankman, ISSCC'18	Valavi, VLSI'18
Technology	28nm	40nm	65nm	28nm	65nm
Area (mm ²)	1.87	7.1	12	6	17.6
Operating VDD	1	0.63-0.9	0.55-1	0.8/0.8 (0.6/0.5)	0.94/0.68/1.2
Bit precision	4-16b	6-32b	1b	1b	1b
on-chip Mem.	128kB	270kB	100kB	328kB	295kB
<u>Throughput</u> (GOPS)	400	108	1264	400 (60)	18,876
TOPS/W	10	0.384	6	532 (772)	866

- 10-layer CNN demos for MNIST/CIFAR-10/SVHN at energies of 0.8/3.55/3.55 µJ/image
- Equivalent performance to software implementation

[H. Valavi, *VLSI*'18]

Programmable IMC

[H. Jia, arXiv:1811.04047]

CIMU interfacing

N_x: number of cycles to transfer \vec{x} N_y: number of cycles to transfer \vec{y} N_{CIMU}: number of cycles for CIMU compute B_X: bit precision of \vec{x} elements B_A: bit precision of **A** elements

Near-memory computing

Bit-scalable mixed-signal compute

SQNR different that standard integer compute

32

Development board

Software libraries

1. Deep-learning Training Libraries	2. Deep-learning Inference Libraries
(Neras) Standard Keras libs:	High-level network build (Python):
<pre>Dense(units,) Conv2D(filters, kernel_size,)</pre>	<pre>chip_mode = True outputs = QuantizedConv2D(inputs,</pre>
Custom libs:	layer_params)
(INT/CHIP quant.)	Function calls to chip (Python):
<pre>QuantizedDense(units, nb_input=4, nb_weight=4,</pre>	<pre>chip.load_config(num_tiles, nb_input=4,</pre>
•••	Embedded C:
<pre>QuantizedDense(units, nb_input=4, nb_weight=4,</pre>	<pre>chip_command = get_uart_word(); chip_config(); load_weights(); load_image(); image_filter(chip_command); read_dotprod_result(image_filter_command);</pre>

Demonstrations

[H. Jia, *arXiv*:1811.04047]

Neural-Network Demonstrations		
	Network A	Network B
	(4/4-b activations/weights)	(1/1-b activations/weights)
Accuracy of chip	92.4%	89.3%
(vs. ideal)	(vs. 92.7%)	(vs. 89.8%)
Energy/10-way Class. ¹	105.2 µJ	5.31 µJ
Throughput ¹	23 images/sec.	176 images/sec.
Neural Network Topology	L1: 128 CONV3 – Batch norm L2: 128 CONV3 – POOL – Batch norm. L3: 256 CONV3 – Batch. norm L4: 256 CONV3 – POOL – Batch norm. L5: 256 CONV3 – Batch norm. L6: 256 CONV3 – POOL – Batch norm. L7-8: 1024 FC – Batch norm. L9: 10 FC – Batch norm.	L1: 128 CONV3 – Batch Norm. L2: 128 CONV3 – POOL – Batch Norm. L3: 256 CONV3 – Batch Norm. L4: 256 CONV3 – POOL – Batch Norm. L5: 256 CONV3 – Batch Norm. L6: 256 CONV3 – POOL – Batch Norm. L7-8: 1024 FC – Batch norm. L9: 10 FC – Batch norm.

Conclusions & summary

Matrix-vector multiplies (MVMs) are a little different than other computations \rightarrow high-dimensionality operands lead to data movement / memory accessing

Bit cells make for dense, energy-efficient PE's in spatial array \rightarrow but require analog operation to fit compute, and impose SNR tradeoff

Must focus on SNR tradeoff to enable

scaling (technology/platform levels) and architectural integration

In-memory computing greatly affects the architectural tradeoffs, requiring new strategies for mapping applications

Acknowledgements: funding provided by ADI, DARPA, NRO, SRC/STARnet