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Applications

Speed of response
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Power consumed

CloudEdge

Conversational 

Interfaces

…natural?

…seamless?

…real-time?
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Task Complexity, Memory and Classification Energy

Face Detection

SVM

Digit Recognition
Image Classification

10 classes

Binary CNN

Image Classification

1000 classes

MobileNet v1
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Task Complexity, Memory and Classification Energy
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Edge Inference System
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Opportunities for Analog/Mixed-Signal Design
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Outline
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 Data-Compressive Imager for Object Detection

› Omid-Zohoor & Young, TCSVT 2018 & ISSCC 2019

 Mixed-Signal ConvNet

› Bankman, ISSCC 2018 & JSSC 2019

 RRAM-based ConvNet with In-Memory Compute

› Ongoing work



Wake-Up Detector with Hand-Crafted Features

Feature 
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Analog Feature Extractor 

 Low-rate and/or low–resolution ADC

 Low data rate digital I/O

 Reduced memory requirements
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Histogram of Oriented Gradients
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Analog Gradient Computation
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High Dynamic Range Images
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 Gradient magnitude varies 

significantly across image

 Would require high-

resolution ADCs (≥ 9b) to 

digitize computed gradients

› But, we want to produce 

as little data as possible



Ratio-Based (“Log”) Gradients
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Ratio Quantization
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HOG Feature Compression with 1.5b Gradients

Quant

Fewer angle bins

Quantizing histogram 

magnitudes

25× less data in HOG 

features compared to 8-bit 

image
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Log vs. Linear Gradients
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Prototype Chip
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Row Buffers with Pixel Binning (Image Pyramid)
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Ratio-to-Digital Converter (RDC)
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Data-Driven Spec Derivation
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Chip Summary

• 0.13 µm CIS 1P4M

• 5µm 4T pixels

• QVGA 320(V) x 240(H)

• 229 mW @ 30 FPS

Supply Voltages

Pixel:     2.5V

Analog: 1.5V, 2.5V

Digital:  0.9V
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Sample Images
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Results using Deformable Parts Model detection & custom database (PascalRAW) 



Comparison to State of the Art
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Information Preservation
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Use Log Gradients as ConvNet Input?
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 Ongoing work; comparable performance using ResNet-10 (PascalRaw dataset) 



Digital ConvNet Fabric

Can We Play Mixed-Signal Tricks in a ConvNet?
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BinaryNet

 Courbariaux et al., NIPS 2016

 Weights and activations constrained to +1 

and -1, multiplication becomes XNOR

 Minimizes D/A and A/D overhead

 Nice option for small/medium-size 

problems and mixed-signal exploration
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Bankman et al., ISSCC 2018

Mixed-Signal Binary CNN Processor

1. Binary CNN with “CMOS-inspired” 
topology, engineered for minimal circuit-
level path loading

2. Hardware architecture amortizes 
memory access across many 
computations, with all memory on chip 
(328 KB)

3. Energy-efficient switched-capacitor 
neuron for wide vector summation, 
replacing digital adder tree
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CIFAR-10



Zhao et al., FPGA 2017

Original BinaryNet Topology

 88.54% accuracy on CIFAR-10

 1.67 MB weight memory (68% FC layers)

 27.9 mJ/classification with FPGA
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Mixed-Signal BinaryNet Topology

 Sacrificed accuracy for regularity and energy efficiency

 86.05% accuracy on CIFAR-10

 328 KB weight memory

 3.8 mJ per classification
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Neuron
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Naïve Sequential Computation
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Weight-Stationary

256

x2 (north/south)

x4 (neuron mux)
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Weight-Stationary and Data-Parallel
Parallel

broadcast

37



Complete Architecture
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𝑧 = sgn ෍

𝑖=0

1023

𝑤𝑖𝑥𝑖 + 𝑏 𝑧

𝑤 𝑏
Filter Weights

𝑥
Image Patch Filter Bias

9b sign-magnitude

𝑏 = −1 𝑠෍

𝑖=0
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2𝑖𝑚𝑖

Output

2×2×256 2×2×256

Neuron Function
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𝑣diff
𝑉𝐷𝐷

=
𝐶𝑢
𝐶𝑡𝑜𝑡

෍

𝑖=0

1023

𝑤𝑖𝑥𝑖 + 𝑏

𝑏 = −1 𝑠෍

𝑖=0
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2𝑖𝑚𝑖

Switched-Capacitor Implementation

Bias & offset cal.Weights x inputs

 Batch normalization 

folded into weight 

signs and bias
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Behavioral Simulations
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 Significant margin in noise, offset, and mismatch (VFS = 460 mV) 

𝐶𝑢 = 1 fF𝑣𝑜𝑠 = 4.6 mV RMS𝑣𝑛 = 460 µV RMS



“Memory-Cell-Like” Processing Element

1 fF metal-oxide-metal fringe capacitorStandard-cell-based

42 transistors

24107 F2
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 TSMC 28nm HPL 1P8M

 6 mm2 area

 328 KB SRAM

 10 MHz clock

Supply Voltages

VDD – Digital Logic, 0.6V – 1.0V

VMEM – SRAM, 0.53V – 1.0V

VNEU – Neuron Array, 0.6V

VCOMP – Comparators, 0.8V

Die Photo
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μ = 86.05%

σ = 0.40%

Measured Classification Accuracy

 10 chips, 180 runs each through 

10,000 CIFAR-10 test images

 VDD = 0.8V, VMEM = 0.8V

 3.8 μJ/classification

 237 FPS, 899 μW

 0.43 μJ in 1.8V I/O

 Mean accuracy μ = 86.05% same 

as perfect digital model
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Comparison to Synthesized Digital

BinarEye
(Moons et al., CICC 2018)

Synthesized Digital Mixed-Signal
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Digital vs. Mixed-Signal Binary CNN Processor

Synthesized

Digital

Moons et al. 

CICC 2018

Hand-Designed

Digital

(Projected)

Mixed-Signal

Bankman et al.

ISSCC 2018

Energy @ 

86.05% 

CIFAR-10
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CIFAR-10 Energy vs. Accuracy  Neuromorphic
› [1] TrueNorth, Esser PNAS 

2016

 GPU
› [2] Zhao FPGA 2017

 FPGA
› [2] Zhao FPGA 2017

› [3] Umuroglu FPGA 2017

 MCU
› [4] CMSIS-NN, Lai arXiv 2018

 Memory-like, mixed-signal
› [5] Bankman ISSCC 2018

 BinarEye, digital
› [6] Moons CICC 2018

 In-memory, mixed-signal
› [7] Jia arXiv 2018

*energy excludes off-chip 
DRAM
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Limitations of Mixed-Signal BinaryNet
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 Poor programmability

 Relatively limited accuracy (even on CIFAR-10) due to 1b arithmetic

 Energy advantage over customized digital is not revolutionary

› Same SRAM, essentially same dataflow

 Need a more “analog” memory system to unleash larger gains 

› In-memory computing



BinaryNet Synapse versus Resistive RAM 

• TBD

• 25 F2

• Multi-bit (?)
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• 0.93 fJ per 1b-MAC in 28 nm

• 24107 F2

• Single-bit



Tsai, 2018

Matrix-Vector Multiplication with Resistive Cells
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Typically use two cells to 

achieve pos/neg weights

(other schemes possible) 



256 columns

…

1
0

2
4

 r
o
w

s

25 F2 cell @ F = 90 nm

Side length s = 0.45 mm

2 x 1024 x 0.45 um x 256 x 0.45 um = 0.106 mm2

per layer

0.84 mm2 for the complete 8-layer network

RRAM Density – BinaryNet Example
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(2x)



Ongoing Research
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 What is the best architecture?

 How many levels can be stored in each cell?

 What is the most efficient readout?

 Can we cope with nonidealities using training techniques? 
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VGG-7 Experiment (4.8 Million Parameters)
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8192

10

3×3×128

3×3×128

3×3×256 3×3×512

3×3×2563×3×3

2-bit weights, 2-bit 

activations

Accuracy on CIFAR-10

2b quantization only: 93%

2b quantization + RRAM/ADC model: 92%

Work in progress!



Optimal energy/MAC = 0.38 fJ 

Energy Model for Column in Conv6 Layer
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Summary
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 Analog feature extraction is attractive for wake-up detectors

 Adding analog compute in ConvNets can be beneficial when it 

simultaneously lets us reduce data movement 

› In-memory analog compute looks most promising

› Can consider SRAM or emerging memories (e.g. RRAM)

 Expect significant progress as more application drivers for “machine 

learning at the edge” emerge 


