Mixed-Signal Techniques for Embedded Machine Learning Systems

Boris Murmann June 16, 2019

Applications

Speed of response

Bandwidth utilized

Privacy

Power consumed

Task Complexity, Memory and Classification Energy

Task Complexity, Memory and Classification Energy

Edge Inference System

5

Opportunities for Analog/Mixed-Signal Design

Outline

Data-Compressive Imager for Object Detection

> Omid-Zohoor & Young, TCSVT 2018 & ISSCC 2019

Mixed-Signal ConvNet

> Bankman, ISSCC 2018 & JSSC 2019

RRAM-based ConvNet with In-Memory Compute

> Ongoing work

Wake-Up Detector with Hand-Crafted Features

Analog Feature Extractor

- Low-rate and/or low-resolution ADC
- Low data rate digital I/O
- Reduced memory requirements

Low-dimensional representation

Histogram of Oriented Gradients

Analog Gradient Computation

Bright patch

 $G_H = 400mV - 100mV = 300mV$

Dark patch

$$G_H = \left(\frac{1}{4}\right) 400mV - \left(\frac{1}{4}\right) 100mV = 75mV$$

High Dynamic Range Images

- Gradient magnitude varies significantly across image
- Would require highresolution ADCs (≥ 9b) to digitize computed gradients
 - But, we want to produce as little data as possible

Ratio-Based ("Log") Gradients

Ratio Quantization

HOG Feature Compression with 1.5b Gradients

Log vs. Linear Gradients

Less Illumination

Log vs. Linear Gradients

Less Illumination

Log vs. Linear Gradients

Less Illumination

Prototype Chip

Row Buffers with Pixel Binning (Image Pyramid)

20

Ratio-to-Digital Converter (RDC)

Data-Driven Spec Derivation

Chip Summary

- 0.13 µm CIS 1P4M
- 5µm 4T pixels
- QVGA 320(V) x 240(H)
- 229 μW @ 30 FPS

Supply Voltages Pixel: 2.5V Analog: 1.5V, 2.5V Digital: 0.9V

Results using Deformable Parts Model detection & custom database (PascalRAW)

Comparison to State of the Art

	This Work	[Choi, ISSCC'13]	[Katic, Sens.J.'15]	[Bong, ISSCC'17]
Technology	0.13 μm 1P4M	0.18 μm 1P4M	0.18 μm	65 nm 1P8M
Resolution	320x240	256x256	32x32	320x240
Pixel Size	5 μm x 5 μm	5.9 μm x 5.9 μm	31 μm x 26 μm	7 μm x 7 μm
Fill Factor	60.4%	30%	24%	-
Feature Type	log-gradients	linear HOGs	relative ratios between pixels	linear Haar-like w/ face-detector
Frame Rate	30 fps nom. 207 fps max	15 fps - reported	9756 fps nom. 24000 fps max	1 fps - reported
Dynamic Range	59.3 dB ¹	54.8 dB	43 dB^2	-
Power Consumption	229 µW @ 30fps	51 µW @ 15 fps	4 mW @ 9765 fps	24-96 µW @ 1fps
Energy Efficiency	1.5-bit: 99 pJ/pixel 2.75-bit: 114 pJ/pixel	52 pJ/pixel	404 pJ/pixel	312 - 1250 pJ/pixel
Multi-Scale	Yes - arbitrary square bins	No	No	Yes - three scales

1. At output of cyclic row buffer, without RDC 2. Pixel-to-pixel dynamic range

Information Preservation

Raw Pixels

1.5-bit Log Gradients

*truncated from 2.75-bit

Reconstruction

*courtesy Julien Martel

Use Log Gradients as ConvNet Input?

Ongoing work; comparable performance using ResNet-10 (PascalRaw dataset)

Can We Play Mixed-Signal Tricks in a ConvNet?

 \sim

BinaryNet

- Courbariaux et al., NIPS 2016
- Weights and activations constrained to +1 and -1, multiplication becomes XNOR
- Minimizes D/A and A/D overhead
- Nice option for small/medium-size problems and mixed-signal exploration

Mixed-Signal Binary CNN Processor

- Binary CNN with "CMOS-inspired" topology, engineered for minimal circuitlevel path loading
- Hardware architecture amortizes memory access across many computations, with all memory on chip (328 KB)
- 3. Energy-efficient switched-capacitor neuron for wide vector summation, replacing digital adder tree

Bankman et al., ISSCC 2018

Original BinaryNet Topology

- 1.67 MB weight memory (68% FC layers)
- 27.9 mJ/classification with FPGA

Zhao et al., FPGA 2017

Mixed-Signal BinaryNet Topology

4096

- Sacrificed accuracy for regularity and energy efficiency
- 86.05% accuracy on CIFAR-10
- 328 KB weight memory
- 3.8 μJ per classification

Neuron

34

Naïve Sequential Computation

Weight-Stationary

Weight-Stationary and Data-Parallel

Complete Architecture

Neuron Function

Switched-Capacitor Implementation

 Batch normalization folded into weight signs and bias

Weights x inputs

1024b thermometer binary-weighted $W_{1023} X_{1023} W_2 X_2 W_1 X_1 W_0 X_0$ $m_7 \overline{s}$ $m_0 s$ $m_0 \overline{s}$ $m_7 s$ 2⁻¹C_u 2⁶C_u 2⁶C_u I C_u $\boxed{2^6C_u}$ $\boxed{2^6C_u}$ $\boxed{2^{-1}C_u}$ $\boxed{2^{-1}C_u}$ I C_u C_{u} Cu $m_7 \overline{s}$ $m_0 \ \overline{s}$ $W_2 X_2 W_1 X_1 W_0 X_0$ $m_7 s$ W₁₀₂₃ X₁₀₂₃ $m_0 s$

Bias & offset cal.

Behavioral Simulations

Significant margin in noise, offset, and mismatch (V_{FS} = 460 mV)

"Memory-Cell-Like" Processing Element

Standard-cell-based 42 transistors 24107 F²

1 fF metal-oxide-metal fringe capacitor

Die Photo

- TSMC 28nm HPL 1P8M
- 6 mm² area
- 328 KB SRAM
- 10 MHz clock

Supply Voltages

 V_{DD} – Digital Logic, 0.6V – 1.0V V_{MEM} – SRAM, 0.53V – 1.0V V_{NEU} – Neuron Array, 0.6V V_{COMP} – Comparators, 0.8V

Measured Classification Accuracy

- 10 chips, 180 runs each through 10,000 CIFAR-10 test images
- $V_{DD} = 0.8V, V_{MEM} = 0.8V$
- 3.8 µJ/classification
- 237 FPS, 899 μW
- 0.43 µJ in 1.8V I/O
- Mean accuracy µ = 86.05% same as perfect digital model

Comparison to Synthesized Digital

Synthesized Digital

BinarEye (Moons et al., CICC 2018)

Mixed-Signal

Digital vs. Mixed-Signal Binary CNN Processor

CIFAR-10 Energy vs. Accuracy

- Neuromorphic
 - > [1] TrueNorth, Esser PNAS 2016
- GPU
 - > [2] Zhao FPGA 2017
- FPGA
 - > [2] Zhao FPGA 2017
 - > [3] Umuroglu FPGA 2017
- MCU
 - > [4] CMSIS-NN, Lai arXiv 2018
- Memory-like, mixed-signal
 - > [5] Bankman ISSCC 2018
- BinarEye, digital
 - > [6] Moons CICC 2018
- In-memory, mixed-signal
 - [7] Jia arXiv 2018
 *energy excludes off-chip DRAM

Limitations of Mixed-Signal BinaryNet

- Poor programmability
- Relatively limited accuracy (even on CIFAR-10) due to 1b arithmetic
- Energy advantage over customized digital is not revolutionary
 - > Same SRAM, essentially same dataflow
- Need a more "analog" memory system to unleash larger gains
 - > In-memory computing

48

BinaryNet Synapse versus Resistive RAM

- 0.93 fJ per 1b-MAC in 28 nm
- 24107 F²
- Single-bit

- TBD
- 25 F²
- Multi-bit (?)

Matrix-Vector Multiplication with Resistive Cells

NVM

ᅻ

Typically use two cells to achieve pos/neg weights (other schemes possible)

Tsai, 2018

Ongoing Research

- What is the best architecture?
- How many levels can be stored in each cell?
- What is the most efficient readout?
- Can we cope with nonidealities using training techniques?

VGG-7 Experiment (4.8 Million Parameters)

Energy Model for Column in Conv6 Layer

- Analog feature extraction is attractive for wake-up detectors
- Adding analog compute in ConvNets can be beneficial when it simultaneously lets us reduce data movement
 - > In-memory analog compute looks most promising
 - > Can consider SRAM or emerging memories (e.g. RRAM)
- Expect significant progress as more application drivers for "machine learning at the edge" emerge