
Hardware Efficiency Aware Neural Architecture  
Search and Compression

Song Han
Assistant Professor

Massachusetts Institute of Technology

https://songhan.mit.edu

https://songhan.mit.edu

A Challenge for Deep Learning Computing

Moore’s
Law

Data

• We are solving more complicated AI problems with larger datasets,
which requires more computation. 

• However, Moore’s Law is slowing down; the amount of computation
per unit cost is no longer increasing at its historic rate.

We Need Algorithm and Hardware Co-Design
CHAPTER 1. INTRODUCTION 3

Domain-Specific
Hardware

Efficient  
AlgorithmBenchmark

Hardware

Algorithm

?

co-design

CPU/GPU… ?PU

design across the full stack

�1

Figure 1.1: This thesis focused on algorithm and hardware co-design for deep learning. This thesis
answers the two questions: what methods can make deep learning algorithm more efficient, and
what is the best hardware architecture for such algorithm.

The philosophy of this thesis is to make neural network inference less complicated and make it
more efficient through algorithm and hardware co-design.

Motivation for Model Compression: First, a smaller model means less overhead when
exporting models to clients. Take autonomous driving for example; Tesla periodically copies new
models from their servers to customers’ cars. Smaller models require less communication in such
over-the-air (OTA) updates, making frequent updates more feasible. Another example is the Apple
Store: mobile applications above 100 MB will not download until a user connects to Wi-Fi. As a
result, a new feature that increases the binary size by 100MB will receive much more scrutiny than
one that increases it by 10MB. Thus, putting a large DNN model in a mobile application is infeasible.

The second reason is inference speed. Many mobile scenarios require low-latency, real-time
inference, including self-driving cars and AR glasses, where latency is critical to guarantee safety
or user experience. A smaller model helps improve the inference speed on such devices: from the
computational perspective, smaller DNN models require fewer arithmetic operations and computation
cycles; from the memory perspective, smaller DNN models take less memory reference cycles. If the
model is small enough it can fit in the on-chip SRAM, which is faster to access than off-chip DRAM
memory.

The third reason is energy consumption. Running large neural networks requires significant
memory bandwidth to fetch the weights — this consumes considerable energy and is problematic for
battery-constrained mobile devices. As a result, iOS 10 requires iPhones to be plugged into chargers
while performing photo analysis. Memory access dominates energy consumption. Smaller neural
networks require less memory access to fetch the model, saving energy and extending battery life.

The fourth reason is cost. When deploying DNNs on Application-Specific Integrated Circuits
(ASICs), a sufficiently small model can be stored on-chip directly. As smaller models require less
on-chip SRAM, this permits a smaller ASIC die thus making the chip less expensive.

Smaller deep learning models are also appealing when deployed in large-scale data centers as

Song Han, Stanford PhD thesis, 2017. https://purl.stanford.edu/qf934gh3708

“There is plenty of room at the top by optimizing the algorithm. We found that DNN
models can be significantly compressed and simplified”

https://purl.stanford.edu/qf934gh3708

Model Compression

pruning
neurons

pruning
synapses

after pruningbefore pruning

pruning
neurons

pruning
synapses

after pruningbefore pruning

Pruning
Han et al [NIPS’15]

Quantization
Han et al [ICLR’16]
Best Paper Award

Deep Compression

Learning both Weights and Connections for Efficient Neural Networks

Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding

https://arxiv.org/pdf/1506.02626.pdf
https://arxiv.org/pdf/1510.00149.pdf

Results: Compression Ratio

Network Original
Size

Compressed
Size

Compression  
Ratio

Original
Accuracy

Compressed
Accuracy

LeNet-300 1070KB 27KB 40x 98.36% 98.42%

LeNet-5 1720KB 44KB 39x 99.20% 99.26%

AlexNet 240MB 6.9MB 35x 80.27% 80.30%

VGGNet 550MB 11.3MB 49x 88.68% 89.09%

Inception-V3 91MB 4.2MB 22x 93.56% 93.67%

ResNet-50 97MB 5.8MB 17x 92.87% 93.04%

EIE Accelerator
Han et al [ISCA’16]

Available on AWS Marketplace

ESE Accelerator
Han et al [FPGA’17]
Best Paper Award

EIE: Efficient Inference Engine on Compressed Deep Neural Network

Song Han⇤ Xingyu Liu⇤ Huizi Mao⇤ Jing Pu⇤ Ardavan Pedram⇤

Mark A. Horowitz⇤ William J. Dally⇤†

⇤Stanford University, †NVIDIA
{songhan,xyl,huizi,jingpu,perdavan,horowitz,dally}@stanford.edu

Abstract—State-of-the-art deep neural networks (DNNs)
have hundreds of millions of connections and are both compu-
tationally and memory intensive, making them difficult to de-
ploy on embedded systems with limited hardware resources and
power budgets. While custom hardware helps the computation,
fetching weights from DRAM is two orders of magnitude more
expensive than ALU operations, and dominates the required
power.

Previously proposed ‘Deep Compression’ makes it possible
to fit large DNNs (AlexNet and VGGNet) fully in on-chip
SRAM. This compression is achieved by pruning the redundant
connections and having multiple connections share the same
weight. We propose an energy efficient inference engine (EIE)
that performs inference on this compressed network model and
accelerates the resulting sparse matrix-vector multiplication
with weight sharing. Going from DRAM to SRAM gives EIE
120⇥ energy saving; Exploiting sparsity saves 10⇥; Weight
sharing gives 8⇥; Skipping zero activations from ReLU saves
another 3⇥. Evaluated on nine DNN benchmarks, EIE is
189⇥ and 13⇥ faster when compared to CPU and GPU
implementations of the same DNN without compression. EIE
has a processing power of 102 GOPS/s working directly on
a compressed network, corresponding to 3 TOPS/s on an
uncompressed network, and processes FC layers of AlexNet at
1.88⇥104 frames/sec with a power dissipation of only 600mW.
It is 24,000⇥ and 3,400⇥ more energy efficient than a CPU
and GPU respectively. Compared with DaDianNao, EIE has
2.9⇥, 19⇥ and 3⇥ better throughput, energy efficiency and
area efficiency.

Keywords-Deep Learning; Model Compression; Hardware
Acceleration; Algorithm-Hardware co-Design; ASIC;

I. INTRODUCTION

Neural networks have become ubiquitous in applications
including computer vision [1]–[3], speech recognition [4],
and natural language processing [4]. In 1998, Lecun et
al. classified handwritten digits with less than 1M parame-
ters [5], while in 2012, Krizhevsky et al. won the ImageNet
competition with 60M parameters [1]. Deepface classified
human faces with 120M parameters [6]. Neural Talk [7]
automatically converts image to natural language with 130M
CNN parameters and 100M RNN parameters. Coates et
al. scaled up a network to 10 billion parameters on HPC
systems [8].

Large DNN models are very powerful but consume large
amounts of energy because the model must be stored in
external DRAM, and fetched every time for each image,

4-bit	  
Relative	Index

4-bit	  
Virtual	weight

16-bit		
Real	weight

16-bit	  
Absolute	Index

Encoded	Weight	
Relative	Index	
Sparse	Format	

ALU

Mem

Compressed	
DNN	Model Weight		

Look-up

Index		
Accum

Prediction

Input	
Image

Result

Figure 1. Efficient inference engine that works on the compressed deep
neural network model for machine learning applications.

word, or speech sample. For embedded mobile applications,
these resource demands become prohibitive. Table I shows
the energy cost of basic arithmetic and memory operations
in a 45nm CMOS process [9]. It shows that the total energy
is dominated by the required memory access if there is
no data reuse. The energy cost per fetch ranges from 5pJ
for 32b coefficients in on-chip SRAM to 640pJ for 32b
coefficients in off-chip LPDDR2 DRAM. Large networks do
not fit in on-chip storage and hence require the more costly
DRAM accesses. Running a 1G connection neural network,
for example, at 20Hz would require (20Hz)(1G)(640pJ) =
12.8W just for DRAM accesses, which is well beyond the
power envelope of a typical mobile device.

Previous work has used specialized hardware to accelerate
DNNs [10]–[12]. However, these efforts focus on acceler-
ating dense, uncompressed models - limiting their utility
to small models or to cases where the high energy cost
of external DRAM access can be tolerated. Without model
compression, it is only possible to fit very small neural
networks, such as Lenet-5, in on-chip SRAM [12].

Efficient implementation of convolutional layers in CNN
has been intensively studied, as its data reuse and manipu-
lation is quite suitable for customized hardware [10]–[15].
However, it has been found that fully-connected (FC) layers,
widely used in RNN and LSTMs, are bandwidth limited
on large networks [14]. Unlike CONV layers, there is no
parameter reuse in FC layers. Data batching has become
an efficient solution when training networks on CPUs or
GPUs, however, it is unsuitable for real-time applications
with latency requirements.

Network compression via pruning and weight sharing
[16] makes it possible to fit modern networks such as
AlexNet (60M parameters, 240MB), and VGG-16 (130M
parameters, 520MB) in on-chip SRAM. Processing these

ar
X

iv
:1

60
2.

01
52

8v
2

 [c
s.C

V
]

3
M

ay
 2

01
6

Hardware Acceleration

EIE: Efficient Inference Engine on Compressed Deep Neural Network
ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA

https://arxiv.org/pdf/1602.01528.pdf
https://arxiv.org/pdf/1612.00694.pdf

Sp
ee

du
p

0x

1x

2x

3x

4x

5x

6x

7x

Parameters Pruned Away
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

with load balance without load balance

5.5x speedup  
over dense

6.2x speedup  
over dense

https://arxiv.org/abs/1612.00694
https://aws.amazon.com/marketplace/pp/B079N2J42R

Speeding Up Sparse Neural Network

https://arxiv.org/abs/1612.00694
https://aws.amazon.com/marketplace/pp/B079N2J42R

Deep Compression is Available at:

https://www.xilinx.com/support/documentation/user_guides/ug1327-dnndk-user-guide.pdf

Has all the bottlenecks been solved?

 12

customer

There’s a Shortage of Deep Learning Engineers

more customers

Design Automation for NN

Link Link

http://news.mit.edu/2019/convolutional-neural-network-automation-0321
https://spectrum.ieee.org/tech-talk/computing/networks/using-ai-to-make-better-ai

AMC: AutoML for Model Compression
[ECCV 2018]

Proxyless Neural Architecture Search

HAQ: Hardware-aware  
Automated Quantization

[CVPR 2019], oral

[ICLR 2019]

Design Automation for  
Efficient Deep Learning Computing

AMC: AutoML for Model Compression
[ECCV 2018]

Proxyless Neural Architecture Search

HAQ: Hardware-aware  
Automated Quantization

[CVPR 2019], oral

[ICLR 2019]

Design Automation for  
Efficient Deep Learning Computing

Han Cai, Ligeng Zhu, Song Han

ProxylessNAS: Direct Neural Architecture Search
on Target Task and Hardware

Massachusetts Institute of Technology

ICLR'19

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19
https://arxiv.org/pdf/1812.00332.pdf

https://arxiv.org/pdf/1812.00332.pdf

From Manual Design to Automatic Design

Manual
Architecture

Design

VGGNets
Inception Models

ResNets
DenseNets

….

Automatic
Architecture

Search

Use Human Expertise Use Machine Learning

Reinforcement Learning
Evolution Strategy

Bayesian Optimization
Monte Carlo Tree Search

…

Computational
Resources

Conventional NAS: High Search Cost,  
 High Inference Latency

[1] B Zoph, QV Le, "Neural Architecture Search with Reinforcement Learning”
[2] E Real, A Aggarwal, Y Huang, QV Le, “Regularized evolution for image classifier architecture search”

Conventional NAS
Similar FLOPs,

Much Higher Latency

[1,2]

Less FLOPs, but Higher Latency!

1

10

100

1000

10000

Search Cost: GPU Hours (h)

Normal Train Conventional NAS[1,2]

100 GPU hours

>48,000 GPU hours!  
~$100,000 Cloud Compute Cost 
~11,000 pounds of CO2

CO2 Emission:

human year: 11,000 pounds
SF-NY/per: 2,000 pounds

Model Compression

Pruning

Binarization
Save GPU hours Save GPU Memory

Neural Architecture Search

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19
https://arxiv.org/pdf/1812.00332.pdf

https://arxiv.org/pdf/1812.00332.pdf

ProxylessNAS: Implementation

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19
https://arxiv.org/pdf/1812.00332.pdf

Only one path in GPU memory. Scalable to a large design space.

https://arxiv.org/pdf/1812.00332.pdf

Latency Modeling on Target Hardware

• Mobile farm infrastructure is expensive
• Measuring latency has high variance (thermal throttling)
• Use the latency estimation model as an economical alternative
• Make latency differentiable

Make Latency Differentiable

Results: ProxylessNAS on ImageNet,
Mobile Platform

Model Top-1 Latency Hardware
Aware

No
Proxy

No
Repeat

Search
Cost

Manually
Designed

MobilenetV1 70.6 113ms - - x -

MobilenetV2 72.0 75ms - - x -

NAS

NASNet-A 74.0 183ms x x x 48000

AmoebaNet-A 74.4 190ms x x x 75600

MNasNet 74.0 76ms yes x x 40000

ProxylessNAS ProxylessNAS 74.6-75.1 78ms yes yes yes 200

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19
https://arxiv.org/pdf/1812.00332.pdf

200-300x
less GPU hours

https://arxiv.org/pdf/1812.00332.pdf

Efficiently Search an Efficient Model without Proxy

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19
https://arxiv.org/pdf/1812.00332.pdf

previous work have to utilize proxy tasks:
• CIFAR-10 -> ImageNet
• Small architecture space -> repeat the building blocks
• Fewer epochs training -> full training

https://arxiv.org/pdf/1812.00332.pdf

Demo: the Search History on Different HW

(1) The history of finding efficient Mobile model

(2) The history of finding efficient CPU model

(3) The history of finding efficient GPU model

https://drive.google.com/file/d/1nut1owvACc9yz1ZPqcbqoJLS2XrVPp1Q/view

Mobile

GPU

Learning both the weight and architecture

CPU

https://drive.google.com/file/d/1nut1owvACc9yz1ZPqcbqoJLS2XrVPp1Q/view
https://drive.google.com/file/d/1nut1owvACc9yz1ZPqcbqoJLS2XrVPp1Q/view

• With >74.5% top-1
accuracy, ProxylessNAS is 1.8x faster
than MobileNet-v2

Results: Proxyless-NAS on ImageNet,
Mobile Platform

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19
https://arxiv.org/pdf/1812.00332.pdf

https://arxiv.org/pdf/1812.00332.pdf

When targeting GPU platform, the accuracy is further improved to 75.1%.
3.1% higher than MobilenetV2.

Results: Proxyless-NAS on ImageNet,
GPU Platform

ProxylessNAS is Quantization Friendly

Model Latency Top-1
Acc

quant_mobilenetv2_128_100 20ms 62.9%
quant_mobilenetv2_192_50 20ms 61.6%

quant_mobilenetv2_224_35 21ms 58.1%
quant_mobilenetv2_160_75 26ms 64.6%

quant_mobilenetv2_224_50 28ms 63.7%
quant_mobilenetv2_160_100 31ms 67.4%
float_mnasnet_224_50 36ms 67.9%

quant_mobilenetv2_192_75 36ms 67.4%
quant_mobilenetv2_192_100 44ms 69.5%

35ms 69.2%

ProxylessNAS:

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/java/ovic#sample-benchmarks

Conventional NAS
SImilar FLOPs, Much

Higher Latency

Top1 74.5

Top1 74.0

Top1 76.7

Top1 74.6

Top1 74.7
ProxylessNAS: 2% Higher

Top1 Acc with Similar Latency

ProxylessNAS:
1.83x Faster with
Similar Top1 Acc

Search an Efficient Model

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19
https://arxiv.org/pdf/1812.00332.pdf

Efficiently Search a Model

1

10

100

1000

10000

Search Cost: GPU Hours (h)

Normal Train Conventional NAS
ProxylessNAS

200x

>48,000 GPU hours!  
~$100,000 Cloud Compute Cost  
~11,000 pound CO2

>200 GPU hours  
~$400 Cloud Compute Cost  
~47 pound CO2

https://arxiv.org/pdf/1812.00332.pdf

Accelerate Super Resolution with ProxylessNAS

CARN
[ECCV’18]  

==>

Proxyless 
NAS
==>

ProxylessNAS is Available on Github

from proxyless_nas import *
net = proxyless_cpu(pretrained=True)

github.com/MIT-HAN-LAB/ProxylessNAS

http://github.com/MIT-HAN-LAB/ProxylessNAS

AMC: AutoML for Model Compression
[ECCV 2018]

Proxyless Neural Architecture Search

HAQ: Hardware-aware  
Automated Quantization

[CVPR 2019], oral

[ICLR 2019]

Design Automation for  
Efficient Deep Learning Computing

Yihui He[2] *, Ji Lin[1] *, Zhijian Liu[1], Hanrui Wang[1], Li-Jia Li[3], Song Han[1]

[1]Massachusetts Institute of Technology,
[2]Xi’an Jiaotong University,

[3]Google

AMC: Automatic Model Compression and
Acceleration for Mobile Devices

ECCV’18

AMC: AutoML for Model Compression and Acceleration on Mobile Devices
https://arxiv.org/pdf/1802.03494.pdf

https://arxiv.org/pdf/1802.03494.pdf

Sensitivity Analysis (Manual Design)

Learning both Weights and Connections for Efficient Neural Networks

https://arxiv.org/pdf/1506.02626.pdf

Environment Agent
Channel  
Pruning

Actor Critic
DDPG

Actions:
sparsity for each layer

State / Reward:
N,C,H,W, accuracy, latency…

AMC: AutoML for Model Compression and Acceleration on Mobile Devices
https://arxiv.org/pdf/1802.03494.pdf

AMC: Automatic Model Compression

https://arxiv.org/pdf/1802.03494.pdf

AMC: Automatic Model Compression
2 Ji Lin, Yihui He, Zhijian Liu, Hanrui Wang, Li-Jia Li, Song Han

Reward= -Error*log(FLOP)

Agent: DDPG

Action: Compress with
Sparsity ratio at (e.g. 50%)

Embedding st=[N,C,H,W,i…]

Environment: Channel Pruning

Layer t-1

Layer t

Layer t+1Critic

Actor

Embedding

Original NN

Model Compression by Human:
Labor Consuming, Sub-optimal

Model Compression by AI:  
Automated, Higher Compression Rate, Faster

Compressed NN

AMC Engine

Original NN Compressed NN

30%

50%

? %

Fig. 1. Overview of AutoML for Model Compression (AMC) engine. Left: AMC replaces
human and makes model compression fully automated while performing better than
human. Right: Form AMC as a reinforcement learning problem. We process a pretrained
network (e.g ., MobileNet-V1) in a layer-by-layer manner. Our reinforcement learning
agent (DDPG) receives the embedding st from a layer t, and outputs a sparsity ratio
at. After the layer is compressed with at, it moves to the next layer Lt+1. The accuracy
of the pruned model with all layers compressed is evaluated. Finally, as a function of
accuracy and FLOP, reward R is returned to the reinforcement learning agent.

solved by brute-force methods. Reinforcement learning methods have been widely
approved to have better sample e�ciency than random exploration and achieve
better solution. Therefore, we propose AutoML for Model Compression (AMC)
which leverages reinforcement learning to e�ciently sample the design space and
greatly improve the model compression quality. Figure 1 illustrates our AMC
engine. When compressing a network, rather than relying on human experience
or hand-crafted heuristics, our AMC engine automates this process and frees the
compression pipeline from human labor.

We observe that the accuracy of the compressed model is very sensitive to the
sparsity of each layer, requiring a fine-grained action space. Therefore, instead
of searching over a discrete space, we come up with a continuous compression
ratio control strategy with a DDPG [4] agent to learn through trials and errors:
penalizing accuracy loss while encouraging model shrinking and speedup. The
actor-critic structure also helps to reduce variance, facilitating stabler training.
Specifically, our DDPG agent processes the network in a layer-wise manner. For
each layer Lt, the agent receives a layer embedding st which encodes useful
characteristics of this layer, and then it outputs a precise compression ratio at.
After layer Lt is compressed with at, the agent moves to the next layer Lt+1. The
validation accuracy of the pruned model with all layers compressed is evaluated
without fine-tuning, which is an e�cient delegate of the fine-tuned accuracy. This
simple approximation can improve the search time not having to retrain the
model, and provide high quality search result. After the policy search is done,
the best-explored model is fine-tuned to achieve the best performance.

To get accuracy, retraining takes a long time;
We solve it by LMS, not retraining, which quickly gives the reward

Previous actuation impacts the future states.
If you pruned a lot in layer i, then layer i+1 has less pressure to be pruned.

AMC: AutoML for Model Compression and Acceleration on Mobile Devices
https://arxiv.org/pdf/1802.03494.pdf

https://arxiv.org/pdf/1802.03494.pdf

DAC ’18, June 24–29, 2018, San Francisco, CA, USA Song Han and William J. Dally

Residual Block 1 Residual Block 2 Residual Block 3 Residual Block 4

Crests: our RL agent automatically learns 3x3 convolutions have
more redundancy and can be pruned more.

Peaks: our RL agent automatically learns 1x1 convolutions
have less redundancy and can be pruned less.

Figure 14: The pruning policy (sparsity ratio) given by our reinforcement learning agent for ResNet-50.

De
ns

ity
  

(#
no

n-
ze

ro
 w

ei
gh

ts
/ t

ot
al

 #
w

ei
gh

ts
)

0%

13%

25%

38%

50%

Conv1 ResBlock1 ResBlock2 ResBlock3 ResBlock4 FC Total

20%

10%

19%
23%

28%28%

43%

29%

20%

30%30%31%31%

50% ResNet50 Density Pruned by Human Expert
ResNet50 Density Pruned by AMC (the lower the better)

�2

Figure 15: Our reinforcement learning agent (AMC) can
prune themodel to a lower density than achieved by human
experts without loss of accuracy. (Human expert: 3.4⇥ com-
pression on ResNet50. AMC : 5⇥ compression on ResNet50.)

5 CONCLUSION
We discussed three bottlenecks toward e�cient deep learning com-
puting: memory bandwidth, network bandwidth, and engineer
bandwidth. For each bottleneck, we provided an e�cient algo-
rithm to reduce the required bandwidth: Deep Compression reduces
model size by 10⇥ to 50⇥, Deep Gradient Compression reduces com-
munication bandwidth by 270⇥ to 600⇥, and AMC engine that uses
AI to automate the model compression process, reducing a day of
human time to 5 hours of GPU time. These bandwidth-e�cient
algorithms lead to faster, more energy e�cient and more scalable
deep learning computing.

REFERENCES
[1] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.

2014. Project Adam: Building an E�cient and Scalable Deep Learning Training
System.. In OSDI, Vol. 14. 571–582.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
genet: A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 248–255.

[3] Facebook. 2017. Delivering real-time AI in the palm of your
hand. (2017). https://code.facebook.com/posts/196146247499076/
delivering-real-time-ai-in-the-palm-of-your-hand

[4] Google. 2017. Google Cloud AI. (2017). https://cloud.google.com/products/
machine-learning/

[5] Google. 2017. Introduction to TensorFlow Lite. (2017). https://www.tensor�ow.
org/mobile/t�ite/

[6] Song Han. 2017. E�cient Methods and Hardware for Deep Learning. Ph.D. Disser-
tation. Stanford University.

[7] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang
Xie, Hong Luo, Song Yao, Yu Wang, and William Dally. 2017. ESE: E�cient
Speech Recognition Engine with Sparse LSTM on FPGA. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.

[8] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: e�cient inference engine on compressed deep

neural network. In Proceedings of the 43rd International Symposium on Computer
Architecture. IEEE Press, 243–254.

[9] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and hu�man coding.
arXiv preprint arXiv:1510.00149 (2015).

[10] Song Han, Je� Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for e�cient neural network. In Advances in Neural Information
Processing Systems. 1135–1143.

[11] Yihui He and Song Han. 2018. AMC: Automated Model Compression and Accel-
eration with Reinforcement Learning. arXiv preprint arXiv:1802.03494 (2018).

[12] Geo�rey Hinton, Oriol Vinyals, and Je� Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[13] Matthew B Johnson and Beth Stevens. 2018. Pruning hypothesis comes of age.
(2018).

[14] Norman P. Jouppi, Cli� Young, Nishant Patil, David Patterson, Gaurav Agrawal,
and et al. . 2017. In-Datacenter Performance Analysis of a Tensor Processing
Unit. In ISCA.

[15] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. Imagenet classi�-
cation with deep convolutional neural networks. In NIPS.

[16] Mary Yvonne Lanzerotti, Giovanni Fiorenza, and Rick A Rand. 2005. Micro-
miniature packaging and integrated circuitry: The work of EF Rent, with an
application to on-chip interconnection requirements. IBM journal of research and
development 49, 4.5 (2005), 777–803.

[17] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[18] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2018. Deep
Gradient Compression: Reducing the Communication Bandwidth for Distributed
Training. ICLR’2018 (2018).

[19] Huizi Mao, Song Han, Je� Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J
Dally. 2017. Exploring the Regularity of Sparse Structure in Convolutional Neural
Networks. arXiv preprint arXiv:1705.08922 (2017).

[20] Philipp Moritz, Robert Nishihara, Ion Stoica, andMichael I Jordan. 2015. Sparknet:
Training deep networks in spark. arXiv preprint arXiv:1511.06051 (2015).

[21] NVIDIA. 2017. NVIDIA GPU Cloud. (2017). https://www.nvidia.com/en-sg/
gpu-cloud/

[22] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joe Emer, Stephen Keckler, and William J.
Dally. 2017. SCNN: An Accelerator for Compressed-sparse Convolutional Neural
Networks. In 44th International Symposium on Computer Architecture.

[23] Ning Qian. 1999. On the momentum term in gradient descent learning algorithms.
Neural networks 12, 1 (1999), 145–151.

[24] JP Rauschecker. 1983. Neuronal mechanisms of developmental plasticity in the
cat’s visual system. Human neurobiology 3, 2 (1983), 109–114.

[25] Christopher A Walsh. 2013. Peter Huttenlocher (1931-2013). Nature 502, 7470
(2013), 172–172.

[26] Wei Wen, Cong Xu, Feng Yan, ChunpengWu, YandanWang, Yiran Chen, and Hai
Li. 2017. TernGrad: Ternary Gradients to Reduce Communication in Distributed
Deep Learning. In Advances in Neural Information Processing Systems.

[27] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun
Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. 2015. Petuum: A new
platform for distributed machine learning on big data. IEEE Transactions on Big
Data 1, 2 (2015), 49–67.

[28] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. 2016. Accelerating very
deep convolutional networks for classi�cation and detection. IEEE transactions
on pattern analysis and machine intelligence 38, 10 (2016), 1943–1955.

[29] Martin Zinkevich, MarkusWeimer, Lihong Li, and Alex J Smola. 2010. Parallelized
stochastic gradient descent. In Advances in neural information processing systems.
2595–2603.

Human

AutoML

(smaller the better)

AMC: AutoML for Model Compression and Acceleration on Mobile Devices
https://arxiv.org/pdf/1802.03494.pdf

AMC: Automatic Model Compression

https://arxiv.org/pdf/1802.03494.pdf

DAC ’18, June 24–29, 2018, San Francisco, CA, USA Song Han and William J. Dally

Residual Block 1 Residual Block 2 Residual Block 3 Residual Block 4

Crests: our RL agent automatically learns 3x3 convolutions have
more redundancy and can be pruned more.

Peaks: our RL agent automatically learns 1x1 convolutions
have less redundancy and can be pruned less.

Figure 14: The pruning policy (sparsity ratio) given by our reinforcement learning agent for ResNet-50.

De
ns

ity
  

(#
no

n-
ze

ro
 w

ei
gh

ts
/ t

ot
al

 #
w

ei
gh

ts
)

0%

13%

25%

38%

50%

Conv1 ResBlock1 ResBlock2 ResBlock3 ResBlock4 FC Total

ResNet50 Density Pruned by Human Expert
ResNet50 Density Pruned by AMC (the lower the better)

�2

Figure 15: Our reinforcement learning agent (AMC) can
prune themodel to a lower density than achieved by human
experts without loss of accuracy. (Human expert: 3.4⇥ com-
pression on ResNet50. AMC : 5⇥ compression on ResNet50.)

5 CONCLUSION
We discussed three bottlenecks toward e�cient deep learning com-
puting: memory bandwidth, network bandwidth, and engineer
bandwidth. For each bottleneck, we provided an e�cient algo-
rithm to reduce the required bandwidth: Deep Compression reduces
model size by 10⇥ to 50⇥, Deep Gradient Compression reduces com-
munication bandwidth by 270⇥ to 600⇥, and AMC engine that uses
AI to automate the model compression process, reducing a day of
human time to 5 hours of GPU time. These bandwidth-e�cient
algorithms lead to faster, more energy e�cient and more scalable
deep learning computing.

REFERENCES
[1] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.

2014. Project Adam: Building an E�cient and Scalable Deep Learning Training
System.. In OSDI, Vol. 14. 571–582.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
genet: A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 248–255.

[3] Facebook. 2017. Delivering real-time AI in the palm of your
hand. (2017). https://code.facebook.com/posts/196146247499076/
delivering-real-time-ai-in-the-palm-of-your-hand

[4] Google. 2017. Google Cloud AI. (2017). https://cloud.google.com/products/
machine-learning/

[5] Google. 2017. Introduction to TensorFlow Lite. (2017). https://www.tensor�ow.
org/mobile/t�ite/

[6] Song Han. 2017. E�cient Methods and Hardware for Deep Learning. Ph.D. Disser-
tation. Stanford University.

[7] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang
Xie, Hong Luo, Song Yao, Yu Wang, and William Dally. 2017. ESE: E�cient
Speech Recognition Engine with Sparse LSTM on FPGA. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.

[8] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: e�cient inference engine on compressed deep

neural network. In Proceedings of the 43rd International Symposium on Computer
Architecture. IEEE Press, 243–254.

[9] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and hu�man coding.
arXiv preprint arXiv:1510.00149 (2015).

[10] Song Han, Je� Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for e�cient neural network. In Advances in Neural Information
Processing Systems. 1135–1143.

[11] Yihui He and Song Han. 2018. AMC: Automated Model Compression and Accel-
eration with Reinforcement Learning. arXiv preprint arXiv:1802.03494 (2018).

[12] Geo�rey Hinton, Oriol Vinyals, and Je� Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[13] Matthew B Johnson and Beth Stevens. 2018. Pruning hypothesis comes of age.
(2018).

[14] Norman P. Jouppi, Cli� Young, Nishant Patil, David Patterson, Gaurav Agrawal,
and et al. . 2017. In-Datacenter Performance Analysis of a Tensor Processing
Unit. In ISCA.

[15] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. Imagenet classi�-
cation with deep convolutional neural networks. In NIPS.

[16] Mary Yvonne Lanzerotti, Giovanni Fiorenza, and Rick A Rand. 2005. Micro-
miniature packaging and integrated circuitry: The work of EF Rent, with an
application to on-chip interconnection requirements. IBM journal of research and
development 49, 4.5 (2005), 777–803.

[17] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[18] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2018. Deep
Gradient Compression: Reducing the Communication Bandwidth for Distributed
Training. ICLR’2018 (2018).

[19] Huizi Mao, Song Han, Je� Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J
Dally. 2017. Exploring the Regularity of Sparse Structure in Convolutional Neural
Networks. arXiv preprint arXiv:1705.08922 (2017).

[20] Philipp Moritz, Robert Nishihara, Ion Stoica, andMichael I Jordan. 2015. Sparknet:
Training deep networks in spark. arXiv preprint arXiv:1511.06051 (2015).

[21] NVIDIA. 2017. NVIDIA GPU Cloud. (2017). https://www.nvidia.com/en-sg/
gpu-cloud/

[22] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joe Emer, Stephen Keckler, and William J.
Dally. 2017. SCNN: An Accelerator for Compressed-sparse Convolutional Neural
Networks. In 44th International Symposium on Computer Architecture.

[23] Ning Qian. 1999. On the momentum term in gradient descent learning algorithms.
Neural networks 12, 1 (1999), 145–151.

[24] JP Rauschecker. 1983. Neuronal mechanisms of developmental plasticity in the
cat’s visual system. Human neurobiology 3, 2 (1983), 109–114.

[25] Christopher A Walsh. 2013. Peter Huttenlocher (1931-2013). Nature 502, 7470
(2013), 172–172.

[26] Wei Wen, Cong Xu, Feng Yan, ChunpengWu, YandanWang, Yiran Chen, and Hai
Li. 2017. TernGrad: Ternary Gradients to Reduce Communication in Distributed
Deep Learning. In Advances in Neural Information Processing Systems.

[27] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun
Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. 2015. Petuum: A new
platform for distributed machine learning on big data. IEEE Transactions on Big
Data 1, 2 (2015), 49–67.

[28] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. 2016. Accelerating very
deep convolutional networks for classi�cation and detection. IEEE transactions
on pattern analysis and machine intelligence 38, 10 (2016), 1943–1955.

[29] Martin Zinkevich, MarkusWeimer, Lihong Li, and Alex J Smola. 2010. Parallelized
stochastic gradient descent. In Advances in neural information processing systems.
2595–2603.

AMC: Automatic Model Compression

AMC: AutoML for Model Compression and Acceleration on Mobile Devices
https://arxiv.org/pdf/1802.03494.pdf

https://arxiv.org/pdf/1802.03494.pdf

AMC : Accelerating MobileNet

Model MAC Top-1 Top-5 Latency Speed Memory
1.0

MobileNet 569M 70.6% 89.5% 119.0ms 8.4 fps 20.1MB

AMC
(50% MAC) 285M 70.5% 89.3% 64.4ms 15.5 fps 

(1.8x) 14.3MB

AMC
(50% Time) 272M 70.2% 89.2% 59.7ms 16.8 fps 

(2.0x) 13.2MB

0.75
MobileNet 325M 68.4% 88.2% 69.5ms 14.4 fps

(1.7x) 14.8MB

AMC: AutoML for Model Compression and Acceleration on Mobile Devices
https://arxiv.org/pdf/1802.03494.pdf

https://arxiv.org/pdf/1802.03494.pdf

AMC is Available on Github

github.com/mit-han-lab/AMC

http://github.com/mit-han-lab/AMC

AMC: AutoML for Model Compression
[ECCV 2018]

Proxyless Neural Architecture Search

HAQ: Hardware-aware  
Automated Quantization

[CVPR 2019], oral

[ICLR 2019]

Design Automation for  
Efficient Deep Learning Computing

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, Song Han

Hardware-aware Automated Quantization with Mixed Precision

�43

Massachusetts Institute of Technology

CVPR’19, oral

HAQ: Hardware-Aware Automated Quantization with Mixed Precision
https://arxiv.org/pdf/1811.08886.pdf

https://arxiv.org/pdf/1811.08886.pdf

Fixed-Precision Quantization

Quantized ModelBitwidths

Layer 1
8 bits / 8 bits

Layer 2
8 bits / 8 bits

Layer 3
8 bits / 8 bits

weight activation

……

0 0 1 0 0 0 1 00 1 0 10 1 0 1

1 0 1 0 1 0 0 01 0 0 11 1 0 1

1 0 1 0 1 0 1 01 1 1 01 1 1 0

……

Hardware, AI and Neural-nets

Contribution I: Mixed-Precision Quantization

weight activation

……

Quantized ModelBitwidths

Layer 1
4 bits / 5 bits

Layer 2
6 bits / 7 bits

Layer 3
5 bits / 4 bits 0 0 1 00 1 0 11

1 0 1 0 1 0 01 0 0 10 1

1 0 1 0 11 1 1 0

……

Hardware, AI and Neural-nets

Contribution II: Design Automation

Choices: 8 x 8 = 64

Design Space: 64n

Choices: 8 x 8 = 64

Choices: 8 x 8 = 64

weight activation

……

Quantized ModelBitwidths

Layer 1
4 bits / 5 bits

Layer 2
6 bits / 7 bits

Layer 3
5 bits / 4 bits 0 0 1 00 1 0 11

1 0 1 0 1 0 01 0 0 10 1

1 0 1 0 11 1 1 0

……

Hardware, AI and Neural-nets

Contribution II: Design Automation

Critic

Actor

Agent: DDPG

Action

State
Reward

Hardware, AI and Neural-nets

weight activation

……

Quantized ModelBitwidths

Layer 1
4 bits / 5 bits

Layer 2
6 bits / 7 bits

Layer 3
5 bits / 4 bits 0 0 1 00 1 0 11

1 0 1 0 1 0 01 0 0 10 1

1 0 1 0 11 1 1 0

……

Hardware Accelerator

BISMO (Edge)

PE

&

<<

Cycle 0
(MSB)

Cycle T
(LSB)

+

⋯

⋯

⋯ ⋯⋯

an ⋯

⋯

w0
⋯⋯⋯

wn ⋯ a0

+

PE

PEPEPE

PE ⋯

Hardware
Mapping

Direct
Feedbac

Contribution III: Hardware-Aware Specialization

Hardware, AI and Neural-nets

Critic

Actor

Agent: DDPG

Action

State
Reward

weight activation

……

Quantized ModelBitwidths

Layer 1
4 bits / 5 bits

Layer 2
6 bits / 7 bits

Layer 3
5 bits / 4 bits 0 0 1 00 1 0 11

1 0 1 0 1 0 01 0 0 10 1

1 0 1 0 11 1 1 0

……

BitFusion (Edge)

PE

&

<<

Cycle 0
(MSB)

Cycle T
(LSB)

+

⋯

⋯

⋯ ⋯⋯

an ⋯

⋯

w0
⋯⋯⋯

wn ⋯ a0

+

PE

PEPEPE

PE ⋯BISMO (Cloud)

PE

&

<<

Cycle 0
(MSB)

Cycle T
(LSB)

+
⋯

⋯

⋯ ⋯⋯

an ⋯

⋯

w0
⋯⋯⋯

wn ⋯ a0

+
PE

PEPEPE

PE ⋯

Hardware Accelerator

BISMO (Edge)

PE

&

<<

Cycle 0
(MSB)

Cycle T
(LSB)

+

⋯

⋯

⋯ ⋯⋯

an ⋯

⋯

w0
⋯⋯⋯

wn ⋯ a0

+

PE

PEPEPE

PE ⋯

Hardware
Mapping

Direct
Feedbac

Contribution III: Hardware-Aware Specialization

Hardware, AI and Neural-nets

Critic

Actor

Agent: DDPG

Action

State
Reward

weight activation

……

Quantized ModelBitwidths

Layer 1
4 bits / 5 bits

Layer 2
6 bits / 7 bits

Layer 3
5 bits / 4 bits 0 0 1 00 1 0 11

1 0 1 0 1 0 01 0 0 10 1

1 0 1 0 11 1 1 0

……

Results: HAQ Outperforms Uniform Quantization

Hardware, AI and Neural-nets

HAQ (Ours) PACT Baseline

Results: Model and Hardware Specialization
MobileNet-V1 MobileNet-V2

Edge

Cloud

HAQ: Hardware-Aware Automated Quantization with Mixed Precision
Kuan Wang* Zhijian Liu* Yujun Lin* Ji Lin Song Han (* equal contributions)

Massachusetts Institute of Technology

Design Automation for Mixed-Precision Quantization

Background and Challenges:
• Emergent DNN accelerators support mixed precision; however, conventional algorithms still use

uniform quantization, that is to assign the same number of bits to all of the layers.
• Mixed precision will introduce a very huge design space (i.e., bitwidth for each layer), which is

impractical to be fully explored by human designers.
• Different hardware has different properties, which might lead to different optimal assignments.

References:
[1] AMC: AutoML for Model Compression and Acceleration on Mobile Devices, ECCV’18
[2] ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19
[3] Design Automation for Efficient Deep learning Computing, arXiv’19Project Page

Motivations and Contributions

Mixed Precision Design Automation Hardware-Aware Specialization

Overview of Hardware-Aware Quantization (HAQ)

We leverage reinforcement learning to automatically assign the quantization policy and incorporate
the hardware accelerator’s feedback into the optimization loop to provide specialized solutions.

Interpretable Policy

Specialization for Different Models, Hardware and Objectives

Results: Our HAQ significantly
outperforms PACT in all settings.
This large accuracy improvement
comes from the flexibility provided
by the mixed precision.

Low Search Cost

Good Transferability

Model quantization is a widely used technique to compress and accelerate DNN inference.

Methods:
• Baseline (Full Precision)
• HAQ (Ours)
• PACT (Uniform Quantization)

Dataset: ImageNet
Hardware: BISMO (Edge/Cloud)

Search Cost Top-1 Top-5 Latency

ES 17 hours 65.7% 86.8% 45.5 ms

BO 74 hours 66.3% 87.2% 45.5 ms

Ours 17 hours 67.4% 87.9% 45.5 ms

Top-1 Top-5 Latency

PACT 61.4% 83.7% 52.2 ms

Ours (search for V2) 66.9% 87.3% 52.1 ms

Ours (transfer from V1) 65.8% 86.6% 52.1 ms

#weight bit (pointwise) #weight bit (depthwise)
#activation bit (pointwise) #activation bit (depthwise)

8
6
4
2
4
6

6
4
2
4
6
8

OPs per Byte (pointwise) # OPs per Byte (depthwise)

depthwise: fewer bits

0

4
2

pointwise:more bits

depthwise:more bits pointwise:fewer bits

layer

Edge

Cloud

layer

layer

#b
it

#b
it

lo
g#

HAQ: Hardware-Aware Automated Quantization with Mixed Precision
Kuan Wang* Zhijian Liu* Yujun Lin* Ji Lin Song Han (* equal contributions)

Massachusetts Institute of Technology

Design Automation for Mixed-Precision Quantization

Background and Challenges:
• Emergent DNN accelerators support mixed precision; however, conventional algorithms still use

uniform quantization, that is to assign the same number of bits to all of the layers.
• Mixed precision will introduce a very huge design space (i.e., bitwidth for each layer), which is

impractical to be fully explored by human designers.
• Different hardware has different properties, which might lead to different optimal solutions.

References:
[1] AMC: AutoML for Model Compression and Acceleration on Mobile Devices, ECCV’18
[2] ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19
[3] Design Automation for Efficient Deep Learning Computing, arXiv’19GitHub Page

Motivations and Contributions

Mixed Precision Design Automation Hardware-Aware Specialization

Overview of Hardware-Aware Quantization (HAQ)

We use reinforcement learning to automatically explore the quantization policy and incorporate the
hardware accelerator’s feedback into the optimization loop to provide specialized solutions.

Interpretable Policy

Specialization for Different Models, Hardware and Objectives

Results: Our HAQ significantly
outperforms PACT in all settings.
This large improvement comes
from flexibility (mixed precision)
and superior policy (by RL agent).

Low Search Cost

Good Transferability

Model quantization is a widely-used technique to compress model and accelerate DNN inference.

Methods:
• Baseline (Full Precision)
• HAQ (Ours)
• PACT (Uniform Quantization)

Dataset: ImageNet
Hardware: BISMO (Edge/Cloud)

Search Cost Top-1 Top-5 Latency

ES 17 hours 65.7% 86.8% 45.5 ms

BO 74 hours 66.3% 87.2% 45.5 ms

Ours 17 hours 67.4% 87.9% 45.5 ms

Top-1 Top-5 Latency

PACT 61.4% 83.7% 52.2 ms

Ours (search for V2) 66.9% 87.3% 52.1 ms

Ours (transfer from V1) 65.8% 86.6% 52.1 ms

Table 1

V1-edge-w V1-edge-a V1-cloud-w V1-cloud-a

5 5 6 6

8 8 5 5

7 4 8 5

7 7 6 4

6 4 5 4

7 7 6 4

6 4 6 4

7 7 7 4

6 4 5 4

7 7 7 4

6 4 4 4

7 7 7 4

7 4 5 4

7 6 7 4

7 4 5 4

7 6 7 4

7 4 5 4

7 6 7 4

7 4 5 4

7 7 7 4

7 4 4 4

7 7 7 4

7 4 5 4

7 6 7 7

7 6 6 6

7 5 7 7

7 7 8 8

Table 2

V1-edge-w edge-a DW-weight-bit PW-weight-bit V1-edge-a DW-activation-bit PW-activation-bit Cloud-w cloud-a DW-weight-bit

2 5 2 -3 0 5 2 3 0 6 6 -4

3 2 8 0 -6 2 8 0 6 5 5 0

4 7 2 -5 0 4 2 2 0 7 5 -5

5 2 7 0 -5 2 7 0 5 6 5 0

6 6 2 -4 0 4 2 2 0 6 5 -4

7 2 7 0 -5 2 7 0 5 5 5 0

8 6 2 -4 0 4 2 2 0 6 5 -4

9 2 7 0 -5 2 7 0 5 5 5 0

10 6 2 -4 0 4 2 2 0 6 5 -4

11 2 7 0 -5 2 7 0 5 5 5 0

12 6 2 -4 0 4 2 2 0 6 5 -4

13 2 7 0 -5 2 7 0 5 5 5 0

14 7 2 -5 0 4 2 2 0 6 4 -4

15 2 7 0 -5 2 6 0 4 5 5 0

16 7 2 -5 0 4 2 2 0 6 4 -4

17 2 7 0 -5 2 6 0 4 5 5 0

18 7 2 -5 0 4 2 2 0 6 4 -4

19 2 7 0 -5 2 6 0 4 5 5 0

20 7 2 -5 0 4 2 2 0 6 4 -4

21 2 7 0 -5 2 7 0 5 5 5 0

22 7 2 -5 0 4 2 2 0 7 4 -5

23 2 7 0 -5 2 7 0 5 5 5 0

24 7 2 -5 0 4 2 2 0 7 5 -5

25 2 7 0 -5 2 6 0 4 5 5 0

26 7 2 -5 0 6 2 4 0 8 4 -6

27 2 7 0 -5 2 5 0 3 5 4 0

2 2 -2 -2 4 5 0

Table 3

V2-edge-w V2-edge-a V2-cloud-w V2-cloud-a

5 5 5 5

3 5 4 7

3 5 4 7

4 5 6 6

4 7 4 6

5 7 4 5

7 4 5 3

4 7 4 5

4 7 5 5

7 6 5 5

6 7 4 5

5 7 5 5

7 4 6 3

6 7 4 5

5 7 5 5

7 5 6 4

6 7 5 5

5 7 5 5

7 6 5 5

6 7 5 5

6 7 6 6

7 5 8 3

6 7 5 5

6 7 6 6

7 5 8 4

6 7 5 6

6 7 6 5

7 5 8 4

7 7 5 5

6 7 6 6

7 5 8 4

7 7 5 6

6 7 6 6

7 5 8 4

6 7 5 6

6 7 6 6

7 4 8 4

6 6 5 6

6 6 6 6

6 6 8 6

6 6 6 6

6 6 7 7

6 6 8 5

6 6 5 7

6 6 7 8

6 6 8 5

6 6 5 7

6 6 7 8

#weight bit (pointwise) #weight bit (depthwise)
#activation bit (pointwise) #activation bit (depthwise)

8
6
4
2
4
6

6
4
2
4
6
8

Table 4

V2-edge-w V2-edge-w #weight bit
(depthwise)

#weight bit
(pointwise)

V2-edge-a V2-edge-a #activation bit
(depthwise)

#activation bit
(pointwise)

V2-cloud-w V2-cloud-w #weight bit
(depthwise)

#weight bit
(pointwise)

2 5 5 -3 0 5 5 3 0 4 4 -2 0

3 3 3 0 -1 6 6 0 4 5 5 0 -3

4 3 3 0 -1 6 6 0 4 5 5 0 -3

5 6 6 -4 0 5 5 3 0 4 4 -2 0

6 4 4 0 -2 7 7 0 5 4 4 0 -2

7 4 4 0 -2 7 7 0 5 4 4 0 -2

8 7 7 -5 0 4 4 2 0 4 4 -2 0

9 4 4 0 -2 7 7 0 5 4 4 0 -2

10 4 4 0 -2 7 7 0 5 4 4 0 -2

11 7 7 -5 0 6 6 4 0 4 4 -2 0

12 5 5 0 -3 7 7 0 5 4 4 0 -2

13 5 5 0 -3 7 7 0 5 4 4 0 -2

14 7 7 -5 0 5 5 3 0 5 5 -3 0

15 6 6 0 -4 7 7 0 5 4 4 0 -2

16 5 5 0 -3 7 7 0 5 4 4 0 -2

17 7 7 -5 0 5 5 3 0 5 5 -3 0

18 6 6 0 -4 7 7 0 5 4 4 0 -2

19 6 6 0 -4 7 7 0 5 4 4 0 -2

20 7 7 -5 0 6 6 4 0 5 5 -3 0

21 6 6 0 -4 7 7 0 5 4 4 0 -2

22 6 6 0 -4 7 7 0 5 5 5 0 -3

23 7 7 -5 0 5 5 3 0 6 6 -4 0

24 7 7 0 -5 7 7 0 5 4 4 0 -2

25 6 6 0 -4 7 7 0 5 5 5 0 -3

26 7 7 -5 0 5 5 3 0 6 6 -4 0

27 7 7 0 -5 7 7 0 5 4 4 0 -2

#b
it

6

4
2
4

6

#b
it

6
4
2

4

6

OPs per Byte (pointwise) # OPs per Byte (depthwise)
#b

it

Layer index

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50

lo
g

#

Layer index

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50

#weight bit (pointwise) #weight bit (depthwise) #activation bit (pointwise) #activation bit (depthwise)
lo

g#

#b
its

#params (pointwise) #params (depthwise) #weight bits (pointwise) #weight bits (depthwise)

6

4

2
4

6

lo
g#

Layer index

2 5 8 11 14 17 20 23 26

Edge

Cloud

MobileNet-V2 OPs per Byte

2

depthwise: fewer bits

0

4
2

pointwise:more bits

depthwise:more bits pointwise:fewer bits

DW:less bits PW:more bits

depthwise:more bits pointwise:fewer bits

depthwise:fewer bits at first few layers
depthwise:more bits at last few layers

depthwise:fewer bits pointwise:more bits

depthwise:more bits pointwise:fewer bits more params, fewer bits

layer

downsample

Edge

Cloud

layer

layer

layer

layer

layer

#b
it

#b
it

lo
g#

�1

Hardware, AI and Neural-nets

Model Size Constrained

Results: HAQ Supports Multiple Objectives

Hardware, AI and Neural-nets

Latency Constrained Energy Constrained

�53

Interpreting the Quantize Policy on the Edge

�54

Interpreting the Quantize Policy on the Edge

Low Search Cost

�55

HAQ: Hardware-Aware Automated Quantization with Mixed Precision
Kuan Wang* Zhijian Liu* Yujun Lin* Ji Lin Song Han (* equal contributions)

Massachusetts Institute of Technology

Design Automation for Mixed-Precision Quantization

Background and Challenges:
• Emergent DNN accelerators support mixed precision; however, conventional algorithms still use

uniform quantization, that is to assign the same number of bits to all of the layers.
• Mixed precision will introduce a very huge design space (i.e., bitwidth for each layer), which is

impractical to be fully explored by human designers.
• Different hardware has different properties, which might lead to different optimal assignments.

References:
[1] AMC: AutoML for Model Compression and Acceleration on Mobile Devices, ECCV’18
[2] ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19
[3] Design Automation for Efficient Deep learning Computing, arXiv’19Project Page

Motivations and Contributions

Mixed Precision Design Automation Hardware-Aware Specialization

Overview of Hardware-Aware Quantization (HAQ)

We leverage reinforcement learning to automatically assign the quantization policy and incorporate
the hardware accelerator’s feedback into the optimization loop to provide specialized solutions.

Interpretable Policy

Specialization for Different Models, Hardware and Objectives

Results: Our HAQ significantly
outperforms PACT in all settings.
This large accuracy improvement
comes from the flexibility provided
by the mixed precision.

Low Search Cost

Good Transferability

Model quantization is a widely used technique to compress and accelerate DNN inference.

Methods:
• Baseline (Full Precision)
• HAQ (Ours)
• PACT (Uniform Quantization)

Dataset: ImageNet
Hardware: BISMO (Edge/Cloud)

Search Cost Top-1 Top-5 Latency

ES 17 hours 65.7% 86.8% 45.5 ms

BO 74 hours 66.3% 87.2% 45.5 ms

Ours 17 hours 67.4% 87.9% 45.5 ms

Top-1 Top-5 Latency

PACT 61.4% 83.7% 52.2 ms

Ours (search for V2) 66.9% 87.3% 52.1 ms

Ours (transfer from V1) 65.8% 86.6% 52.1 ms

#weight bit (pointwise) #weight bit (depthwise)
#activation bit (pointwise) #activation bit (depthwise)

8
6
4
2
4
6

6
4
2
4
6
8

OPs per Byte (pointwise) # OPs per Byte (depthwise)

depthwise: fewer bits

0

4
2

pointwise:more bits

depthwise:more bits pointwise:fewer bits

layer

Edge

Cloud

layer

layer

#b
it

#b
it

lo
g#

Good Transfer Ability

�56

HAQ: Hardware-Aware Automated Quantization with Mixed Precision
Kuan Wang* Zhijian Liu* Yujun Lin* Ji Lin Song Han (* equal contributions)

Massachusetts Institute of Technology

Design Automation for Mixed-Precision Quantization

Background and Challenges:
• Emergent DNN accelerators support mixed precision; however, conventional algorithms still use

uniform quantization, that is to assign the same number of bits to all of the layers.
• Mixed precision will introduce a very huge design space (i.e., bitwidth for each layer), which is

impractical to be fully explored by human designers.
• Different hardware has different properties, which might lead to different optimal assignments.

References:
[1] AMC: AutoML for Model Compression and Acceleration on Mobile Devices, ECCV’18
[2] ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19
[3] Design Automation for Efficient Deep learning Computing, arXiv’19Project Page

Motivations and Contributions

Mixed Precision Design Automation Hardware-Aware Specialization

Overview of Hardware-Aware Quantization (HAQ)

We leverage reinforcement learning to automatically assign the quantization policy and incorporate
the hardware accelerator’s feedback into the optimization loop to provide specialized solutions.

Interpretable Policy

Specialization for Different Models, Hardware and Objectives

Results: Our HAQ significantly
outperforms PACT in all settings.
This large accuracy improvement
comes from the flexibility provided
by the mixed precision.

Low Search Cost

Good Transferability

Model quantization is a widely used technique to compress and accelerate DNN inference.

Methods:
• Baseline (Full Precision)
• HAQ (Ours)
• PACT (Uniform Quantization)

Dataset: ImageNet
Hardware: BISMO (Edge/Cloud)

Search Cost Top-1 Top-5 Latency

ES 17 hours 65.7% 86.8% 45.5 ms

BO 74 hours 66.3% 87.2% 45.5 ms

Ours 17 hours 67.4% 87.9% 45.5 ms

Top-1 Top-5 Latency

PACT 61.4% 83.7% 52.2 ms

Ours (search for V2) 66.9% 87.3% 52.1 ms

Ours (transfer from V1) 65.8% 86.6% 52.1 ms

#weight bit (pointwise) #weight bit (depthwise)
#activation bit (pointwise) #activation bit (depthwise)

8
6
4
2
4
6

6
4
2
4
6
8

OPs per Byte (pointwise) # OPs per Byte (depthwise)

depthwise: fewer bits

0

4
2

pointwise:more bits

depthwise:more bits pointwise:fewer bits

layer

Edge

Cloud

layer

layer

#b
it

#b
it

lo
g#

(Transfer the RL agent from MobileNet-v1 to MobileNet-v2)

Contributions

Design Automation

5 bits

6 bits

4 bits

4 bits

7 bits

5 bits

8 bits

8 bits

8 bits

8 bits

8 bits8 bits

Mixed Precision Hardware-Aware Specialization
…… ……

…… ……

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19

AMC: AutoML for Model Compression and Acceleration on Mobile Devices, ECCV’18

HAQ: Hardware-Aware Automated Quantization with Mixed Precision, CVPR’19

Related Papers

Hardware, AI and Neural-nets

HAQ is Available on Github

github.com/mit-han-lab/HAQ

Thursday 9:24am, #199 @CVPR’19

http://github.com/mit-han-lab/HAQ

Summary

1. ProxylessNAS: automatically architect efficient neural networks
2. AMC: automatic model compression
3. HAQ: automatic quantization with mixed precision

1st place in CVPR’19 Visual Wake Words Challenge

MAC < 60M
Efficient mobile CNN model

Peak Memory Usage < 250KB

Model Size < 250KB People? No People?  
(Wake or Sleep)

camera

Put them together: ProxylessNAS => AMC => HAQ

Peak Memory: 245KB
Modle Size: 242KB

MAC: 50M
Top1: 94.575%

Our result:

�62

1 Massachusetts Institute of Technology
2 MIT-IBM Watson AI Lab

Ji Lin1, Chuang Gan2, Song Han1

Defensive Quantization
When Efficiency Meets Robustness

�63

ICLR’19

Defensive Quantization: When Efficiency Meets Robustness, ICLR’19
https://arxiv.org/abs/1904.08444

https://arxiv.org/abs/1904.08444

Problem Overview
• Efficiency: Deep neural nets deployment is hard due to limited

resource. Quantization can reduce the computation needed for
deep neural networks.

• Robustness: Deep neural nets are vulnerable to adversarial
attack, leading to potential security issue.

�64

* Han et al. Deep Compression

* Eykholt et al. Robust Physical-World Attacks on Deep Learning Visual Classification

Quantized Model is not Robust

Defensive Quantization: When Efficiency Meets Robustness, ICLR’19
https://arxiv.org/abs/1904.08444

Compressed 4-bit Model: Deer
50% certainty

https://arxiv.org/abs/1904.08444

Why?

• Error Amplification Effect!
• Quantization helps robustness when noise is small; it hurts

robustness when noise is amplified

�66

Defensive Quantization (DQ)

• Main Idea: suppress noise amplification so that quantization
helps robustness

�67
Defensive Quantization: When Efficiency Meets Robustness, ICLR’19

https://arxiv.org/abs/1904.08444

https://arxiv.org/abs/1904.08444

• Lipschitz constant describes: when input changes, how much
does the output change correspondingly.

• to keep the Lipschitz constant of the whole network small, we
need to keep the Lipschitz constant of each layer Lip(φi) ≤ 1

• The Lipschitz constant is by definition the maximum singular
value of W

• However, computing the singular values of each weight matrix
is not computationally feasible during training

• Luckily, if we can keep the weight matrix row orthogonal, the
singular values are by nature equal to 1

• Therefore we transform the problem of keeping ρ(W) ≤ 1 into
keeping WTW ≈ I

�68

|f(y)−f(x)|
|y−x|

≤ k

�69

• Controlling Lipschitz constant during quantization, to suppress the noise
amplification

• We introduce a regularization term ||WT W − I||
• For convolutional layers with weight W ∈ Rcout×cin×k×k, we can view it as

a two-dimension matrix of shape W ∈ Rcout×(cin×k×k) and apply the same
regularization

Solution: Add Lipschitz Regularization

DQ Fixes Robustness Decrease
(And Further Improves It)

�70
Defensive Quantization: When Efficiency Meets Robustness, ICLR’19

https://arxiv.org/abs/1904.08444

https://arxiv.org/abs/1904.08444

Defensive Quantization is both Efficient and Robust

�71
Defensive Quantization: When Efficiency Meets Robustness, ICLR’19

https://arxiv.org/abs/1904.08444

Compressed 4-bit Model: Deer
50% certainty

With Defensive Quantization: Truck
100% certainty

https://arxiv.org/abs/1904.08444

�72

Defensive Quantization is both Efficient and Robust

Take Home

�73

• Aim to raise people’s awareness about the security of the
quantized and deployed neural networks

• Pave a possible direction to bridge two important areas in deep
learning: Efficiency and Robustness

• Design a novel Defensive Quantization (DQ) module to
defend adversarial attacks while maintain the efficiency.

Defensive Quantization: When Efficiency Meets Robustness, ICLR’19
https://arxiv.org/abs/1904.08444

https://arxiv.org/abs/1904.08444

Thank you!

Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han

Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra”

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse,
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse
linear algebra. There are two basic operations to be accelerated: union (OR) and join
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC,
then integrate the HW primitive into TACO. Then, I want to co-design the machine
learning models that are not only pruned to be sparse, but also with the optimal
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine
learning applications accelerated with such sparse primitives: machine translation,
speech recognition, image classification, and Progressive GAN, which makes real-time
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy
efficient by saving the electric bill and total cost of ownership (TCO).

Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.

Project 2: “Optimal Number Representation for Efficient Training/Inference”

“Number representation” is a fundamental problem for efficient machine learning. For
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two
extremes of quantization. The former has easy hw implementation but poor
expressiveness. The latter has inefficient hw implementation (need register lookup
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also
inefficient, since training DNNs needs more dynamic range and exciting methods need
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large
design space, we are interested in learning to learn the optimal number representation
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored
by AI. I plan to use machine learning techniques to find the best number representation
for machine learning. It’s a co-design of number representation together with model
architecture, trading off hardware efficiency and model accuracy. I’d like to push the
pareto frontier of such trade-off.

Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.

HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)

Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han

Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra”

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse,
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse
linear algebra. There are two basic operations to be accelerated: union (OR) and join
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC,
then integrate the HW primitive into TACO. Then, I want to co-design the machine
learning models that are not only pruned to be sparse, but also with the optimal
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine
learning applications accelerated with such sparse primitives: machine translation,
speech recognition, image classification, and Progressive GAN, which makes real-time
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy
efficient by saving the electric bill and total cost of ownership (TCO).

Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.

Project 2: “Optimal Number Representation for Efficient Training/Inference”

“Number representation” is a fundamental problem for efficient machine learning. For
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two
extremes of quantization. The former has easy hw implementation but poor
expressiveness. The latter has inefficient hw implementation (need register lookup
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also
inefficient, since training DNNs needs more dynamic range and exciting methods need
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large
design space, we are interested in learning to learn the optimal number representation
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored
by AI. I plan to use machine learning techniques to find the best number representation
for machine learning. It’s a co-design of number representation together with model
architecture, trading off hardware efficiency and model accuracy. I’d like to push the
pareto frontier of such trade-off.

Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.

HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)

Hardware, AI and Neural-nets

References
• Automated Model Architecture Tuning:  

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware 
Han Cai, Ligeng Zhu, Song Han 
International Conference on Learning Representations (ICLR), 2019.  

• Automated Pruning:  
AMC: AutoML for Model Compression and Acceleration on Mobile Devices.  
Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, Song Han 
European Conference on Computer Vision (ECCV), 2018  

• Automated Quantization:  
HAQ: Hardware-Aware Automated Quantization with Mixed Precision 
Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, Song Han. 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019. Oral presentation. 
 
Defensive Quantization: When Efficiency Meets Robustness  
Ji Lin, Chuang Gan, Song Han  
International Conference on Learning Representations (ICLR), 2019. 

Code available at: github.com/mit-han-lab

https://arxiv.org/pdf/1812.00332
https://iclr.cc/
https://arxiv.org/pdf/1802.03494
http://openaccess.thecvf.com/ECCV2018.py
https://arxiv.org/abs/1811.08886
http://2019.thecvf.com/
https://openreview.net/pdf?id=ryetZ20ctX
https://iclr.cc/
https://github.com/mit-han-lab

