Hardware Efficiency Aware Neural Architecture Search and Compression

Song Han Assistant Professor Massachusetts Institute of Technology

https://songhan.mit.edu

- We are solving more complicated AI problems with larger datasets, which **requires more computation**.
- However, Moore's Law is slowing down; the amount of computation per unit cost is no longer increasing at its historic rate.

We Need Algorithm and Hardware Co-Design

"**There is plenty of room at the top** by optimizing the algorithm. We found that DNN models can be significantly compressed and simplified"

14ii

Song Han, Stanford PhD thesis, 2017. https://purl.stanford.edu/qf934gh3708

Model Compression

Deep Compression

Pruning

Han et al [NIPS'15]

Quantization

Han et al [ICLR'16] Best Paper Award

IIAN LAI

Learning both Weights and Connections for Efficient Neural Networks

1411

Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding

Results: Compression Ratio

Network	Original Size	Compressed Size	Compression Ratio	Original Accuracy	Compressed Accuracy
LeNet-300	1070KB -	→ 27KB	40x	98.36% —	→ 98.42%
LeNet-5	1720KB-	→ 44KB	39x	99.20% —	→ 99.26%
AlexNet	240MB -	→ 6.9MB	35x	80.27% —	→ 80.30%
VGGNet	550MB -	→ 11.3MB	49x	88.68% —	→ 89.09%
nception-V3	91MB -	→ 4.2MB	22x	93.56% —	→ 93.67%
ResNet-50	97MB -	→ 5.8MB	17x	92.87% —	→ 93.04%

Hardware Acceleration

EIE Accelerator

Han et al [ISCA'16]

ESE Accelerator

Han et al [FPGA'17] Best Paper Award Available on AWS Marketplace

EIE: Efficient Inference Engine on Compressed Deep Neural Network

ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA

Speeding Up Sparse Neural Network

1417

https://arxiv.org/abs/1612.00694 https://aws.amazon.com/marketplace/pp/B079N2J42R

Deep Compression is Available at:

XILINX.

Chapter 6: Network Compression

DECENT Overview

The Deep Compression Tool (DECENT) includes two capabilities: Coarse-Grained Pruning and trained quantization. These reduce the number of required operations and quantize the weights. The entire working flow of DECENT is shown in the following figure. In this release, only the quantization tool is included. Contact the Xilinx support team if pruning tool is necessary for your project evaluation.

Figure 27: DECENT Pruning and Quantization Flow

DECENT (Caffe Version) Working Flow

Prepare the Neural Network Model

Before running DECENT, prepare the Caffe model in floating-point format and calibration data set, including:

- Caffe floating-point network model prototxt file.
- Pre-trained Caffe floating-point network model caffemodel file.
- Calibration data set. The calibration set is usually a subset of the training set or actual application images (at least 100 images). Make sure to set the source and root_folder in image_data_param to the actual calibration image list and image folder path, as shown in the following figure.

Figure 29: Sample Caffe Layer for Quantization

Note: Only the 3-mean-value format is supported by DECENT. Convert to the 3-mean-value format as required.

DECENT (TensorFlow Version) Usage

The options supported by DECENT_Q are shown in tables 8 and 9.

Table 8: DECENT Required Options List

Option Name	Туре	Description
input_frozen_graph	String	TensorFlow frozen GraphDef file of the floating-point model.
input_nodes	String	The name list of input nodes, comma separated.
output_nodes	String	The name list of output nodes, comma separated.
input_shapes	String	The shape list of input_nodes. Must be a 4-dimension shape for each node, comma separated, such as 1,224,224,3; support unknown size for batchsize, such as ?,224,224,3. In case of multiple input_node options, assign shape list of each node, separated by':'. For example, ?,224,224,3:?,300,300,1.

DNNDK User Guide UG1327 (v1.5) June 7, 2019

Send Feedback

48

Now Part of Xilinx

E XILINX.

Chapter 6: Network Compression

input_fn	String	The function that provides input data for the input_nodes option, used with calibration dataset. The function format is module_name.input_fn_name, such as my_input_fn.input_fn. The input_fn command should take an int object as input, which indicates the calibration step number, and should return a dict' (input_node_name, numpy.Array)' object for each call, which will be fed into the input nodes of the model. The shape of numpy.Array should be consistent with input_shapes. Meanwhile, two preset input functions are provided:
		default: a simple image load function to load raw image files and do preprocessings. Mean subtraction, central crop, resize and normalization are supported. Should be used with the [DefaultInputFnConfig] command, described below.
		random: a function to produce random numbers for all inputs.

DNNDK User Guide UG1327 (v1.5) June 7, 2019 47

https://www.xilinx.com/support/documentation/user_guides/ug1327-dnndk-user-guide.pdf

Table 9: DNNC Optional Option List

Has all the bottlenecks been solved?

There's a Shortage of Deep Learning Engineers

IIAN LAI

Design Automation for NN

Kicking neural network design automation into high gear

Algorithm designs optimized machine-learning models up to 200 times faster than traditional methods.

Press Inqu

Rob Matheson | MIT News Office March 21, 2019

Шп

A new area in artificial intelligence involves using algorithms to automatically design machine-learning systems known as neural networks, which are more accurate and efficient than those developed by human engineers. But this so-called neural architecture search (NAS) technique is computationally expensive

A state-of-the-art NAS algorithm recently developed by Google to run on a squad of graphical processing units (GPUs) took 48,000 GPU hours to produce a single convolutional neural network, which is used for image classification and detection tasks. Google has the wherewithal to run hundreds of GPUs and other specialized hardware in parallel, but that's out of reach for many others.

ries	RELATED
_	Paper: "ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware"
ve. uad	Song Han
ingle ction alized	Microsystems Technology Laboratories
ık	ď

Using AI to Make Better AI

New approach brings faster, AI-optimized AI within reach for image recognition and other applications

By Mark Anderson

Illustration: iStockphoto

Link

Since 2017, AI researchers have been using AI neural networks to help <u>design</u> better and faster AI neural networks. Applying AI in pursuit of better AI has, to date, been a largely academic pursuit—mainly because this approach requires tens of thousands of GPU hours. If that's what it takes, it's likely quicker and simpler to design real-world AI applications with the fallible guidance of educated guesswork.

Next month, however, a team of <u>MIT</u> researchers will be presenting a socalled <u>"Proxyless neural architecture search" algorithm</u> that can speed up the AI-optimized AI design process by 240 times or more. That would put faster and more accurate AI within practical reach for a broad class of image recognition algorithms and other related applications.

Design Automation for Efficient Deep Learning Computing

Proxyless Neural Architecture Search [ICLR 2019]

3 bit weight 5 bit activation

Layer t+1

3b/5b

Design Automation for Efficient Deep Learning Computing

3 bit weight 5 bit activation 10100010 Layer t+1 3b/5b 1110101001010 Layer t 6b/7b 111010100101 Layer t-1 4b/6b

HAQ: Hardware-aware Automated Quantization

[CVPR 2019], oral

AMC: AutoML for Model Compression

[ECCV 2018]

Proxyless Neural Architecture Search [ICLR 2019]

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware

Han Cai, Ligeng Zhu, Song Han

Massachusetts Institute of Technology

ICLR'19

From Manual Design to Automatic Design

Plii C

Conventional NAS: High Search Cost, High Inference Latency

Model Compression

Neural Architecture Search

Save GPU hours

Save GPU Memory

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR'19 https://arxiv.org/pdf/1812.00332.pdf

ProxylessNAS: Implementation

Only one path in GPU memory. Scalable to a large design space.

Latency Modeling on Target Hardware

Make Latency Differentiable

- Mobile farm infrastructure is expensive
- Measuring latency has high variance (thermal throttling)
- Use the latency estimation model as an economical alternative
- Make latency differentiable

Results: ProxylessNAS on ImageNet, Mobile Platform

	Model	Top-1	Latency	Hardware Aware	No Proxy	No Repeat	Search Cost	
Manually Designed	MobilenetV1	70.6	113ms	-	-	Х	-	
	MobilenetV2	72.0	75ms	-	-	Х	-	
	NASNet-A	74.0	183ms	Х	Х	Х	48000	
NAS	AmoebaNet-A	74.4	190ms	х	х	Х	75600	\mathbf{i}
	MNasNet	74.0	76ms	yes	x	X	40000	200-300x less GPU hours
ProxylessNAS	ProxylessNAS	74.6-75.1	78ms	yes	yes	yes	200	/

Efficiently Search an Efficient Model without Proxy

previous work have to utilize proxy tasks:

- CIFAR-10 -> ImageNet
- Small architecture space -> repeat the building blocks
- Fewer epochs training -> full training

Demo: the Search History on Different HW

Epoch-00

https://drive.google.com/file/d/1nut1owvACc9yz1ZPqcbqoJLS2XrVPp1Q/view

Results: Proxyless-NAS on ImageNet, Mobile Platform

 With >74.5% top-1 accuracy, ProxylessNAS is 1.8x faster than MobileNet-v2

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR'19 <u>https://arxiv.org/pdf/1812.00332.pdf</u>

Results: Proxyless-NAS on ImageNet, GPU Platform

Model	Top-1	Top-5	GPU latency
MobileNetV2 (Sandler et al., 2018)	72.0	91.0	6.1ms
ShuffleNetV2 (1.5) (Ma et al., 2018)	72.6	-	7.3ms
ResNet-34 (He et al., 2016)	73.3	91.4	8.0ms
NASNet-A (Zoph et al., 2018)	74.0	91.3	38.3ms
DARTS (Liu et al., 2018c)	73.1	91.0	-
MnasNet (Tan et al., 2018)	74.0	91.8	6.1ms
Proxyless (GPU)	75.1	92.5	5.1ms

When targeting GPU platform, the accuracy is further improved to 75.1%. 3.1% higher than MobilenetV2.

ProxylessNAS is Quantization Friendly

Model	Latency	Тор-1 Асс
quant_mobilenetv2_128_100	20ms	62.9%
quant_mobilenetv2_192_50	20ms	61.6%
quant_mobilenetv2_224_35	21ms	58.1%
quant_mobilenetv2_160_75	26ms	64.6%
quant_mobilenetv2_224_50	28ms	63.7%
quant_mobilenetv2_160_100	31ms	67.4%
float_mnasnet_224_50	36ms	67.9%
quant_mobilenetv2_192_75	36ms	67.4%
quant_mobilenetv2_192_100	44ms	69.5%

ProxylessNAS:

HANLAL

35ms 69.2%

1417

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/java/ovic#sample-benchmarks

Efficiently Search a Model

Search an Efficient Model

HANLAL

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR'19 https://arxiv.org/pdf/1812.00332.pdf

Accelerate Super Resolution with ProxylessNAS

l'lli7

Ours 41FPS PNSR:21.26

Repositories 7

0 Projects 0

ProxylessNAS is Available on Github

from proxyless_nas import *
net = proxyless_cpu(pretrained=True)

github.com/MIT-HAN-LAB/ProxylessNAS

Design Automation for Efficient Deep Learning Computing

AMC: AutoML for Model Compression

[ECCV 2018]

HAQ: Hardware-aware Automated Quantization

[CVPR 2019], oral

IIAN LAI

Proxyless Neural Architecture Search [ICLR 2019]

AMC: Automatic Model Compression and Acceleration for Mobile Devices

Yihui He_[2]*, Ji Lin_[1]*, Zhijian Liu_[1], Hanrui Wang_[1], Li-Jia Li_[3], Song Han_[1]

^[1]Massachusetts Institute of Technology, ^[2]Xi'an Jiaotong University, ^[3]Google

ECCV'18

AMC: AutoML for Model Compression and Acceleration on Mobile Devices https://arxiv.org/pdf/1802.03494.pdf

Sensitivity Analysis (Manual Design)

Figure 6: Pruning sensitivity for CONV layer (left) and FC layer (right) of AlexNet.

HANLA

Learning both Weights and Connections for Efficient Neural Networks

AMC: <u>Automatic Model Compression</u>

AMC: <u>Automatic Model Compression</u>

To get accuracy, retraining takes a long time; We solve it by LMS, not retraining, which quickly gives the reward

Model Compression by AI: Automated, Higher Compression Rate, Faster

Model Compression by Human: Labor Consuming, Sub-optimal

Environment: Channel Pruning

Previous actuation impacts the future states.

If you pruned a lot in layer i, then layer i+1 has less pressure to be pruned.

AMC: AutoML for Model Compression and Acceleration on Mobile Devices https://arxiv.org/pdf/1802.03494.pdf

AMC: <u>Automatic Model Compression</u>

ŀΙΛΝΙ_

Figure 15: Our reinforcement learning agent (AMC) can prune the model to a lower density than achieved by human experts without loss of accuracy. (Human expert: 3.4× compression on ResNet50. AMC : 5× compression on ResNet50.) AMC: AutoML for Model Compression and Acceleration on Mobile Devices

https://arxiv.org/pdf/1802.03494.pdf

AMC: <u>Automatic Model Compression</u>

ement learning agent for ResNet-50.

HANLAL

ResNet50 Density Pruned by Human Expert ResNet50 Density Pruned by AMC (the lower the better)

AMC: AutoML for Model Compression and Acceleration on Mobile Devices

https://arxiv.org/pdf/1802.03494.pdf

AMC : Accelerating MobileNet

HANLAL

Model	MAC	Top-1	Top-5	Latency	Speed	Memory
1.0 MobileNet	569M	70.6%	89.5%	119.0ms	8.4 fps	20.1MB
AMC (50% MAC)	285M	70.5%	89.3%	64.4ms	15.5 fps (1.8x)	14.3MB
AMC (50% Time)	272M	70.2%	89.2%	59.7ms	16.8 fps (2.0x)	13.2MB
0.75 MobileNet	325M	68.4%	88.2%	69.5ms	14.4 fps (1.7x)	14.8MB

AMC: AutoML for Model Compression and Acceleration on Mobile Devices https://arxiv.org/pdf/1802.03494.pdf

AMC is Available on Github

github.com/mit-han-lab/AMC

Design Automation for Efficient Deep Learning Computing

HAQ: Hardware-aware Automated Quantization

[CVPR 2019], oral

AMC: AutoML for Model Compression

[ECCV 2018]

Proxyless Neural Architecture Search [ICLR 2019]

Hardware-aware Automated Quantization with Mixed Precision

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, Song Han

Massachusetts Institute of Technology

CVPR'19, oral

Fixed-Precision Quantization

Contribution I: Mixed-Precision Quantization

Contribution II: Design Automation

Contribution II: Design Automation

Contribution III: Hardware-Aware Specialization

Contribution III: Hardware-Aware Specialization

Results: HAQ Outperforms Uniform Quantization

Results: Model and Hardware Specialization

1417

- Baseline (Full Precision)
- HAQ (Ours)
- PACT (Uniform Quantization)

Hardware, AI and Neural-nets

Results: HAQ Supports Multiple Objectives

Model Size Constrained

Latency Constrained

Energy Constrained

70 70 70 Top-1 Accuracy (%) 20 22 09 29 . Accuracy (%) 9 89 (%) Accuracy (99 89 * Top-1 Top-1 64 64 40 1 62 62 1.2 1.8 2.0 22 24 26 20 1.4 1.6 14 16 18 20 10 12 14 16 18 8 Model Size (MB) Latency (ms) Energy (mJ)

Interpreting the Quantize Policy on the Edge

Interpreting the Quantize Policy on the Edge

Low Search Cost

	Search Cost	Top-1	Top-5	Latency
ES	17 hours	65.7%	86.8%	45.5 ms
BO	74 hours	66.3%	87.2%	45.5 ms
Ours	17 hours	67.4%	87.9%	45.5 ms

Good Transfer Ability

	Top-1	Top-5	Latency
PACT	61.4%	83.7%	52.2 ms
Ours (search for V2)	66.9%	87.3%	52.1 ms
Ours (transfer from V1)	65.8%	86.6%	52.1 ms

(Transfer the RL agent from MobileNet-v1 to MobileNet-v2)

Contributions

Mixed Precision

Design Automation

Hardware-Aware Specialization

Related Papers

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR'19

AMC: AutoML for Model Compression and Acceleration on Mobile Devices, ECCV'18

HAQ: Hardware-Aware Automated Quantization with Mixed Precision, CVPR'19

Thursday 9:24am, #199 @CVPR'19

HAQ is Available on Github

github.com/mit-han-lab/HAQ

Summary

- 1. ProxylessNAS: automatically architect efficient neural networks 2. AMC: automatic model compression
- 3. HAQ: automatic quantization with mixed precision

Put them together: ProxylessNAS => AMC => HAQ

1st place in CVPR'19 Visual Wake Words Challenge

Improving security as artificial intelligence moves to smartphones

Researchers unveil a tool for making compressed deep learning models less vulnerable to attack.

14117

Defensive Quantization When Efficiency Meets Robustness

Ji Lin¹, Chuang Gan², Song Han¹

¹ Massachusetts Institute of Technology ² MIT-IBM Watson AI Lab

ICLR'19

Problem Overview

• Efficiency: Deep neural nets deployment is hard due to limited resource. Quantization can reduce the computation needed for

deep neural networks.

 Robustness: Deep neural nets are vulnerable to adversarial attack, leading to potential security issue.

- * Han et al. Deep Compression
- * Eykholt et al. Robust Physical-World Attacks on Deep Learning Visual Classification

Quantized Model is not Robust

Compressed 4-bit Model: Deer 50% certainty

Defensive Quantization: When Efficiency Meets Robustness, ICLR'19 https://arxiv.org/abs/1904.08444

Why?

Error Amplification Effect!

 Quantization helps robustness when noise is small; it hurts robustness when noise is amplified

(a) Noise increases with perturbation strength. Quantization makes the slope deeper.

(b) With conventional quantization, noise increases with layer index (the amplification effect).

Defensive Quantization (DQ)

 Main Idea: suppress noise amplification so that quantization helps robustness

Figure 4. The error amplification effect prevents activation quantization from defending adversarial attacks.

- Lipschitz constant describes: when input changes, how much does the output change correspondingly. $\frac{|f(y)-f(x)|}{|y-x|} \le k$
- to keep the Lipschitz constant of the whole network small, we need to keep the Lipschitz constant of each layer Lip(ϕ i) ≤ 1
- The Lipschitz constant is by definition the maximum singular value of W
- However, computing the singular values of each weight matrix is not computationally feasible during training
- Luckily, if we can keep the weight matrix <u>row orthogonal</u>, the singular values are by nature equal to 1
- Therefore we transform the problem of keeping $\rho(W) \leq 1$ into keeping $W^{\mathsf{T}}W \approx \mathsf{I}$

Solution: Add Lipschitz Regularization

- Controlling *Lipschitz constant* during quantization, to suppress the noise amplification
- We introduce a regularization term ||W^TW − I||
- For convolutional layers with weight $W \in R^{cout \times cin \times k \times k}$, we can view it as a two-dimension matrix of shape $W \in R^{cout \times (cin \times k \times k)}$ and apply the same regularization

DQ Fixes Robustness Decrease (And Further Improves It)

Defensive Quantization is both Efficient and Robust

Compressed 4-bit Model: Deer 50% certainty

With Defensive Quantization: Truck 100% certainty

Defensive Quantization is both Efficient and Robust

2. GT: truck

FP: truck (1.00) ✓ **VO:** truck (1.00) ✓ DQ: truck (1.00) ✓

3. GT: plane

- FP: plane (1.00) ✓ VQ: plane (1.00) ✓ DQ: plane (1.00) ✓
- 4. GT: horse

FP: horse (1.00) ✓ VQ: horse (1.00) ✓ DQ: horse (1.00) ✓

5. GT: frog

- FP: frog (1.00) ✓ VQ: frog (1.00) ✓ DQ: frog (1.00) ✓
- 6. GT: ship

- FP: ship (1.00) ✓ VQ: ship (1.00) ✓ DQ: ship (1.00) ✓
- 7. GT: bird

FP: bird (1.00) ✓ VQ: bird (1.00) ✓ DQ: bird (1.00) ✓

FP: truck (1.00) ✓ VQ: deer (0.50) ✗ DQ: truck (1.00) ✓

FP: deer (1.00) X VQ: cat (0.99) X DQ: deer (0.51) X

FP: horse (0.97) ✓ VQ: deer (0.97) X DQ: horse (0.99) ✓

FP: car (0.95) X VQ: deer (0.45) X DQ: frog (0.73) ✓

FP: ship (0.96) ✓ VQ: frog (0.57) ✗ DQ: ship (1.00) ✓

FP: horse (0.32) X VQ: cat (0.87) X DQ: bird (0.99) ✓

Take Home

- Aim to raise people's awareness about the security of the quantized and deployed neural networks
- Pave a possible direction to bridge two important areas in deep learning: <u>Efficiency</u> and <u>Robustness</u>
- Design a novel **Defensive Quantization (DQ)** module to defend adversarial attacks while maintain the efficiency.

Thank you!

Automated Model Architecture Tuning:

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware Han Cai, Ligeng Zhu, Song Han International Conference on Learning Representations (ICLR), 2019.

Automated Pruning:

AMC: AutoML for Model Compression and Acceleration on Mobile Devices.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, Song Han *European Conference on Computer Vision (ECCV), 2018*

Automated Quantization:

HAQ: Hardware-Aware Automated Quantization with Mixed Precision Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, Song Han. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019. Oral presentation.

Defensive Quantization: When Efficiency Meets Robustness

Ji Lin, Chuang Gan, Song Han International Conference on Learning Representations (ICLR), 2019.

Code available at: github.com/mit-han-lab

