

Challenges and Solutions for Embedding Vision Al

Charles Qi System Solution Architect March/25/2018 V 0.4

cādence[°]

Deep Learning is Broad

Wide spectrum of applications, wider spectrum of technology

cādence°

CNN: Convolution Performance is Key – How to Scale?

Diversity Drives Neural Network Complexity

Net topology, layer count, feature map and kernel sizes differ significantly

Convolution Operation Deep Dive

- Convolution layer is multi-dimensional
 - a 3-D input feature tensor convolving with a set of 3-D filter tensors
 - Deep loop stack in software
 - Large variation of input spatial dimension, channel depth and filter count

GEMM Approach Non-ideal for Embedded AI

- GEMM converts convolution into 2-D matrix multiply by brute-force
- IFMAP
 - TxN array, linearize spatial dimension X*Y rows
 - Replication of activation data by R*R across C channels
- Filter

6

• N*M array, R*R*C channel element rows, M filter columns

Input Feature Map Matrix

NxN Plain GEMM Accelerator

- NxN, N=64 MAC array
 - 64 independent vertical slices
 - 64 accumulator rows
- Stationary weight array
 - 64 rows of kernel weights preloaded to array cells in 64 cycles
- Dynamic input/output vectors
 - One 64B/cyc imap vector is fed to array
 - One 64B/cyc omap vector is produced
- Psum stationary array also possible
- Limitations
 - Rigid array configuration often underutilized in various layer dimensions
 - High pipeline overhead
 - im2col implodes memory footprint
 - Inefficient for vector*vector, vector*matrix without large batch
 - Hard to partition for multi-core

7 © 2018 Cadence Design Systems, Inc. All rights reserved

Scaling the Dimensions to Accelerate

Extract Parallelism for Multi-dimensional Scaling

Dimension	Dep.	Single Core Multi-Dimension Vectorization	Multi-core (U) Parallel Load Split
Batch of images (B)	Indep.	 Typically not applied because B << V May be applicable to narrow SIMD Requires interleaving data from multiple "images" 	 Easy to distribute smaller batch to cores when B >> U Reduce filter weight reuse (weight replication, reduced W reuse) Latency to process one image not reduced, bad for RT application
Layer (L)	Data dep	 NA, layers processed sequentially or pipelined in different cores due to layer-to-layer data dependency 	 No overlapping weights in cores, most effective weight reuse Challenge is to balance compute load for different layers Core-to-core data dependency requires core-to-core pipelining
Number of kernels (M)	Indep.	 Most efficient for wide SIMD (M >> V and M%V == 0) Allow kernel weight or data reuse Large local mem footprint due to parallel accumulations Requires data and weight reorganization 	 Easy to partition for U cores without weight overlap when M >> U May limit core-level SIMD vectorization on M when M < V*U Input data is replicated across cores
Spatial (X,Y)	Indep.	 Typically applied to X only when X >> V Filter weight can be reused for entire vector Inefficiency if X%V is non-zero 	 Flexible to partition tiles to cores Inefficiency when tile size becomes smaller than SIMD width Filter weights replicated in cores processing different tiles
Input depth (C)	Accum.	 Inefficient for shallow layer with C << V Require vector reduction of the partial accumulator values in SIMD ways 	 Ineffective for shallow layer with C << U Require final accumulation of intermediate results across cores
Kernel (R)	Accum.	 Typically not applied due to odd and small R Different rows of R in the same vector computes different data, require data re-org, lack of reuse 	 Typically not applied due to odd and small R Require final accumulation for R values from different cores

Accelerating Embedded NN at Edge

solution need to achieve high performance with architecture flexibility

Throughput and Efficiency for CNN

Viable Solution: Tensilica Scalable DSP Platform

DSP cores tailored for application specific needs

- Scalable performance, consistent programming model
- Common baseline Xtensa architecture + application specific processing optimization
- Fully integrated HW/SW tool chain from user-friendly Xplorer IDE

The Real-time Embedded Vision AI Pipeline

where intelligence and programmability meet

How is DSP Optimized for Embedded Vision/CNN?

Focus on computation efficiency and minimize memory access

Increase computation efficiency

✓ ISA level parallelism based on fixed point SIMD

Balance memory and compute resource with VLIW

Specialized TIE instructions for special tasks

Reduce system memory access overhead

- Improve access efficiency with local RAM
- Hide access latency with tiling and DMA
- Minimize cycle count for non-contiguous access

Example of Special Instruction Extension (TIE)

Achieve significant performance while reducing power

Scalar C

3

Specialized TIE for histogram

	//enciplined WIE encoded for high-more encouring						
//scalar C code	//specialized TIE created for histogram processing						
<pre>for (indxData = 0; indxData < len; indxData += 4) {</pre>	for (int $y = 0$; $y < height$; ++y) {						
<pre>data = (uint8_t) datain[indxData];</pre>	<pre>IVP_COUNTEQ24NX8(vdst, sr, vec0, vec1); vhist0 = IVP_ADDNX16(vhist0, vdst); // 0 31</pre>						
hist[data >> ShiftRight]++;	<pre>IVP_COUNTEQ4NX8(vdst, sr, vec0, vec1); vhist1 = IVP_ADDNX16(vhist1, vdst); // 32 63</pre>						
<pre>data = (uint8 t) datain[indxData + 1];</pre>	<pre>IVP_COUNTEQ4NX8 (vdst, sr, vec0, vec1); vhist2 = IVP_ADDNX16 (vhist2, vdst); // 64 95</pre>						
hist[data >> ShiftRight]++;	<pre>IVP_COUNTEQ4NX8 (vdst, sr, vec0, vec1); vhist3 = IVP_ADDNX16 (vhist3, vdst); // 96 127</pre>						
<pre>data = (uint8_t) datain[indxData + 2];</pre>	<pre>IVP_COUNTEQ4NX8 (vdst, sr, vec0, vec1); vhist4 = IVP_ADDNX16 (vhist4, vdst); // 128 159</pre>						
hist[data >> ShiftRight]++;	<pre>IVP_COUNTEQ4NX8(vdst, sr, vec0, vec1); vhist5 = IVP_ADDNX16(vhist5, vdst); // 160 191</pre>						
<pre>data = (uint8 t) datain[indxData + 3];</pre>	<pre>IVP_COUNTEQ4NX8 (vdst, sr, vec0, vec1); vhist6 = IVP_ADDNX16 (vhist6, vdst); // 192 223</pre>						
hist[data >> ShiftRight]++;	<pre>IVP_COUNTEQ4NX8 (vdst, sr, vec0, vec1); vhist7 = IVP_ADDNX16 (vhist7, vdst); // 224 255</pre>						
1							

Hiding Memory Access Latency via Tiling and DMA

Offload tile fetch and writeback

- Tile fetch and writeback by software is inefficient, blocking data processing
- Build-in DMA performs data moving in parallel
 - Parallel DMA access to local memory banks
 - Dedicated NoC master port for DMA
 - Multiple outstanding requests in pipe to memory
- 2D descriptor ring supports complex memory access patterns
 - DMA is aware of the row-dominant image storage format by skipping row pitch at the end of each row
 - 3D/4D tile stream can be composed using multiple descriptors
 - Flexible data alignment
- DMA register-mapped inside processor to minimize initiation/termination overhead
- Ping-pong tile buffers in local RAM removes dependency

Representative NN DSP Architecture Considerations

Uniquely design ISA to strive for processing efficiency

256 – 1024 8x8 multiple-accumulate operations per cycle

Vector-by-vector, vector-by-scalar operations with multiple accumulators

Flexible vectorization scheme to maximize HW utilization

Special addressing for load/store 3D tensor data

Acceleration for pooling, nonlinear activation layers

On-the-fly Coefficient Compression/Decompression

NN ISA Architecture Optimization Concept (1)

Amortize IO cost across multiple computations

- Problem: Vector x Vector operations requires 2 SIMD loads + 1 SIMD store
- Explore Data Reuse prosperity in CNN
 - Multiple filters applied to common IFMAP input data
 - Multiple spatial locations of IFMAP convolve with same filter elements
- Optimization: perform vector x scalar for multiple scalars
 - Amortize vector load BW and keep computation pipeline full

NN ISA Architecture Optimization Concept (2) SIMD segmentation

Problem: layer dimension much smaller than SIMD width

- Optimization: break wide SIMD into smaller segments
 - Apply different scalar data to different segments to fully utilize HW resource

Scale Vision Sub-system Heterogeous Multi-core

Flexibility to customize MP cluster under the same programming model

Multi-core NN Load Partition Example

Split load across layer/batch/kernel

- L and B loops are distributed across MP cores •
- N is split into two loops, NU, NV and N = NU*NV
 - NU is distributed across cores
 - NV is handled by vectored SIMD

	<i>B0</i>	B1	B2	B3
Conv0	NUO	NUO	NUO	NUO
Conv1	NUO	NUO	NUO	NUO
	NU1	NUI	NU1	NU1
	NUO	NUO	NUO	NUO
Conv2	NU1	NU1	NU1	NU1
	NU2	NU2	NU2	NU2
Conv3	NUO	NUO	NUO	NUO
Non-conv				

Cores are designated to certain layers and batches. Most efficient if layers can be loadbalanced, no overlap in weight coefficients across cores.

© 2018 Cadence Design Systems, Inc. All rights reserved

Consistent and Comprehensive Vision Software Solution

Full ecosystem of software frameworks and toolchain across common architecture

Concept to Hardware - Embed AI in Five Streamlined Steps

Conclusion

Wide demand for NN in embedded applications

- Diversified application needs drive various NN architectures
- Demand for higher and higher computation performance
- Embedded power profile and implementation cost drive optimization

Optimization of embedded vision/AI remains challenging

- Too many architecture variants makes it hard to optimize across
- Brute-force approach leads to higher power/memory BW, lower utilization
- Need multi-dimensional scaling without losing flexibility

Specialized NN DSP provides efficiency and flexibility

- Highly optimized ISA improves NN computation efficiency
- End-to-end full network implementation in image/vision pipeline
- SW framework and library automates NN implementation

cādence[®]

© 2018 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at <u>www.cadence.com/go/trademarks</u> are trademarks or registered trademarks of Cadence Design Systems, Inc. All other trademarks are the property of their respective holders.