

Event Prediction in Processors using Deep Temporal Models
Tharindu Mathew, Aswin Raghavan, Sek Chai

SRI International, Princeton, NJ

1. ABSTRACT

In order to achieve high processing efficiencies, next
generation computer architecture designs need an effective
Artificial Intelligence (AI)-framework to learn large-scale
processor interactions. In this short paper, we present
Deep Temporal Models (DTMs) that offer effective and
scalable time-series representations to addresses key
challenges for learning processor data: high data rate, cyclic
patterns, and high dimensionality. We present our
approach using DTMs to learn and predict processor
events. We show comparisons using these learning models
with promising initial simulation results.

2. INTRODUCTION

Large-scale cognitive AI systems have been
successfully deployed for a number of applications from
image recognition to natural language processing. Such
advancements are fueled by availability of training data and
a high-performance computing infrastructure. At the same
time, there has been much attention drawn in the
computer architecture community on accelerating
machine-learning processing to support the growth in
cognitive AI systems. However, there is still limited
research conducted to utilize the power of AI to design
better computer architectures and systems.

Today’s modern processor designs are based on
reactive principles. For each new workload, a new
benchmark is created, execution profiles are created, and a
new HW accelerator is built solving merely near-term and
a-priori known performance issues. This process causes
unacceptable stresses on other system components,
including power delivery network, clock synchronization,
and memory subsystems. The end result is a reactive
approach to the design and operation of the processor: see
a problem, design a solution, look for the next problem,
and repeat. What is needed is a new design paradigm that
breaks away from this reactive design cycle to significantly
provide orders of magnitude of improvement in power
efficiency and computing performance.

Processor hardware performance improvements have
tapered off because it is becoming increasingly challenging
to scale to lower power consumption. The problem with
conventional system design is that it overlooks the
interactions that can be foreseen and mitigated by taking a
holistic look at the interactions occurring across the entire
system. While designers would like to ideally take a holistic
picture into account, the challenge lies in manually
understanding and rationalizing the interactions at design
time. This is simply beyond current capabilities, especially
because the system designers cannot fully anticipate
runtime activity and the consequential impact on
performance, power and reliability.

This short paper presents an AI-enabled approach to
computer architecture design. We posit that the
fundamental aspect for AI-enabled computing is the
development of efficient, scalable ML representation
that can learn naturally the complex processor behavior
and events from processor data. In this paper, we explore
the use of Deep Temporal Models (DTMs) that are
hierarchical and multi-staged, and have been used
successfully in large-scale image processing, with recent
extensions to video processing. Current non-temporal
models like Convolutional Neural Networks (CNN) treat
data as independent and static without the inherently
temporal properties. This is inevitably sub-optimal,
especially from the point of view of learning. We show
DTMs for use in computing and at the same time leverage
temporal models that are specialized for data sequences
rather than static data. We leverage the generative
properties of DTMs to forecast processing and data access
needs in forthcoming phases of the computation.

3. BACKGROUND

There have been multiple generations of machine
learning (ML) applied to the computing domain. While
there is a recent push in research for making deep learning
processing efficient [1-5], there is a disproportionate
amount of research using deep networks for computing.
The first generation used Support Vector Machines (SVMs)
and shallow networks [6] to encode logic functions, for
example for branch prediction and power management.
SVMs are discriminative classifiers; they may provide high
performance in small problems, however, their complexity
increases in large problems. For global processor behaviors
with many cyclic patterns, SVM approaches are likely to
give poor performance. These machine learning
approaches have been used in processor control circuitry,
but to the best of our knowledge, they: (1) are very
component specific, and thus have limited functionality, (2)
do not learn global system behaviors and do not scale well,
and (3) use very shallow neural networks, without spatial-
temporal learning.

The second generation attempted using modern deep
learning techniques. Some work focused on using
Reinforcement Learning (RL) for task scheduling [7] and
device placement/selection [8]. The main limitation of RL
is that the actions of the agents and reward functions
should be defined based on the system and task
requirements. That is, without a well-premised learnt
representation of processor behavior, the RL approach
may not be effective or optimal.

Within the AI field, DTMs are a rapidly growing
research area driven by the need to study and exploit
sequential data. What distinguishes DTMs from their

29

2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications

978-1-5386-7367-6/18/$31.00 ©2018 IEEE
DOI 10.1109/EMC2.2018.00014

contemporaries is the use of so-called “distributed”
representations: explaining data patterns by a set of
interacting features instead of a category or prototype. The
AI research field has evolved in a number of important
ways: 1) the amount of data readily available; 2) more
powerful computational resources to leverage that data;
and, 3) improved algorithms for training in both
supervised and unsupervised learning modes.

The introduction of Deep Belief Networks (DBNs) by
Hinton et al. [9] is widely viewed as the breakthrough that
stimulated the modern view of Deep Learning. Up to this
point, classical multi-layer architectures such as deep neural
networks were known in the ML community but were
universally accepted as difficult to train in practice. Hinton
and colleagues showed that DBNs could be grown
incrementally, by composing simple models called
Restricted Boltzmann Machines (RBMs). The models were
trained in sequence, each model learning to represent the
one before it. Once this “greedy” initialization strategy
completed, the model could be fine-tuned end-to-end.
Labels could be introduced in this second stage of learning.
By first discovering representations, learning became
effective and efficient. DTMs are evolved by extending
RBMs to capture temporal dependencies [10, 11].

Sutskever et al. [12,13] have demonstrated progress of
memorization problems using Recurrent Neural Networks
(RNNs) that have simple, unimodal output distributions
that are better suited for predictions tasks. Bengio’s group
[14,15] has identified and summarized strategies for
constructing and optimizing deep RNN models. They have
found that clipping gradients, leaky integration, advanced
momentum, more powerful output probability models, and
sparser gradients generally help generalization performance
as well as training performance. With advancement in
DTMs (e.g. RBMs, RNN/LSTMs), a number of AI
applications have been successful demonstrated: human
activity recognition from video [16-18], modeling of 3D
volumes [19], and speech processing [20].

None of the prior approaches look at the computing
problem from a deep temporal representative-learning
point of view, nor address the generative side for
predicting expected resource requirements. Our work
described in this paper, covers DTMs that handle temporal
data in a unified manner, since both local and global
information are combined and analyzed as an end-to-end
system.

Our key objective is to lay the foundation for a
proactive computing platform that is adaptive and can
manage its own operational needs. The ultimate goal is to
eliminate the penalties to system design and operation that
arise from the use of incremental circuit techniques and
micro-architectural changes, which increases system
complexity and cost, and affects power consumption – all
for the sake of performance over a generalized set of
benchmark suites that may have little in common with the
computations that will actually be executed on the machine.
More specifically, hardware designers tend to overdesign to

provide a minimum performance guarantee for software,
and this tiered approach between hardware and software
has driven processor architectures to be complex, rigid and
over-designed. For AI-enabled design to be successful, we
advocate an approach that eliminates system overheads,
having resource controlled by a data-driven AI-engine.

4. DEEP TEMPORAL MODELS

We are developing DTMs to learn and predict data-
driven micro-architectural behaviors to achieve an optimal
(or near-optimal) execution flow. The goal is to learn
complex interactions between processor events that have
large variations across different execution phases. We train
the DTMs using a training dataset comprising of recorded
and simulated performance statistics during processor
operation using an architecture simulator. We want to
provide a method where the AI-aspects are not
overdesigned and scale across different workloads. In the
future, we can extend the training using adversarial and
reinforcement learning approaches to capture events not
previously observed or characterized in a benchmark suite.
At runtime, the trained DTMs will recognize patterns of
micro-architectural events, and will infer predictions on
future behavior of the workload. An effective prediction
must meet two criteria: 1) it must anticipate a future
behavior accurately to prevent un-optimized or
unnecessary hardware operation. 2) it must predict a new
execution phase or resource need with enough lead time to
be able to initiate (re)configuration without throttling
platform operation.

DTMs recognize phases of program execution based
on signatures of code sequences and processor states. The
generative model allows us to reconstruct signals and
patterns through inference, so in essence, we can predict
future processor behavior. Much like how gesture
recognition is trained on motion caption data [21], we are
capturing multi-dimensional data from processor operation,
and using that data to train our network.

In this paper, we demonstrate the use of DTMs to
predict aspects of processor operations based on spatial-
temporal analysis, extending our paper using a new variant
of the Conditional Restricted Boltzmann Machines
(CRBMs) [22], with Long-Short-Term Memory (LSTM).
Due to space constraints, we
will present LSTM results in
this paper.

 Figure 1 shows the
LSTM deep learning model
we used to model GPU
processor activity as a time-
series problem. The GPU
instruction sequences (e.g.
add, mov, call) are m
dimensional inputs with the
occurrence of a cache miss as
the binary output at each
execution cycle. The LSTM

Figure 1. LSTM Deep
Temporal Model

30

model is then trained to look at a sequence of instructions,
and predict the occurrence of a cache miss, n cycles ahead.
The LSTM model uses 2048-neuron LSTM [23] cell in 4
successive layers. To improve regularization, a drop out
ratio of 0.5 is applied after each layer. A sigmoid layer
outputs the probability of a cache miss. A threshold of 0.5
is applied to create a binary output that represents the
cache miss.

In our experiments we consider each workload (each
with ~20,000 instructions) of the Rodinia Benchmark, and
stack five of these together to form the training set. The
training converges in usually 2000 epochs using Adagrad,
consuming 1 hour on a Nvidia Titan X GPU. The testing
is done on a workload by predicting n cycles ahead. This
completes in <1 minute.

5. Experiments

We designed experiments to explore and understand
the complexity of deep learning algorithms required to
learn processor (CPU/GPU) operations. We used the
Rodinia Benchmark [24] software suite, which consists of a
number of compute intensive kernels used by researchers
to characterize system performance. We setup a GPU
simulator [25] to run the software suite, and we trained our
algorithms to predict processor events. Table 1 shows the
twelve (12) programs of the Rodinia Benchmark selected
to run through the GPU simulator simulating a NVidia
GTX 480. Executed instructions across cores and data
cache read miss (DC_RM) data are extracted from all of
the programs.

Figure 2 shows the results of learning workloads from
one set of benchmarks to apply to another set of
benchmarks. Our learning algorithms are set to predict
cache misses as an indication of how we can predict
processor operational state. We show that deep learning
models (LSTM) can learn temporal sequences and can
outperform regular machine learning algorithms (SVM). In
addition, LSTM can outperform an approach (naïve
baseline) that randomly predicts. For the Baseline, we use
the true label ratio of the training set as the prediction
probability. We preprocessed data for the SVM in two
ways. The first method included time as a feature, by
stacking a set of features and augmenting the data where
each input consists of a set of instruction sequences
spanning the number of cycles. The second method fed
the data directly to the SVM without augmentation. It was
seen that the time-based augmentation of the data did not
give any performance benefit, and exponentially increased

the training set size, increasing training time. We omit the
results of the first method and present comparisons of the
second method for brevity.

In these experiments, we chose n = 32, to predict
cache misses 32 cycles ahead from a given cycle. This
window can be set during training, and we have shown in
[22] for windows as large as 128 cycles. Larger window
sizes would require more memory storage in the LSTM
network. Five (5) randomly picked training programs are
used as training programs to predict misses of an unseen
test program. Experiments were conducted with n in the
range of [1..128] with similar behavior as observed in
figure 2. The CFD Solver (C) performs well with the
random predictions of the baseline giving us an outlier in
the benchmark. We attribute to the unstructured grid and
the random behavior of fluid dynamics workload. Each
workload has ~20,000 instruction sequences on average.
This results in a sampling size of ~20,000 sequences per
workload.

One salient result is the demonstration that DTMs
can generalize what it has learned to apply from one
workload to another. Our results show that compute heavy
workloads may have common patterns observable through
the histogram of executed instructions, and that these
patterns can be learned. To further improve performance,
we can also use memory addresses and other processor
information as inputs to the DTMs.

There are several takeaway messages in Figure 2. First,
the intent of Figure 2 is to show how DTMs can learn to
predict cache misses from instruction sequences alone.
There are many other inputs to DTM that can be
considered to improve prediction accuracy. Second, we
show how DTMs can generalize to learn from different
benchmarks. Specifically, we can treat DTMs as a tool to
craft new processor control strategies by providing the
right training data. As such, we break away from the
reactive design principles that plague current design
methodology. Third, we show that using a data driven
method, designers can then target smaller subdomains
rather than having a generalized solution for all

Table 1. The Rodinia workload type and problem space

Figure 2. Generalized DTM learning on five random
workloads (LSTM vs. SVM) in predicting data cache

misses. (Training data from Rodinia Benchmark -- BP,
BF...SC).

31

benchmarks. That is, several cache policies can be learned
independently and loaded into hardware at runtime. In this
manner, designers can move away from overdesigning
complex control mechanisms to cover all possible
scenarios.

Similarly, in Figure 3, we show that LSTM can
outperform SVM with less data samples (e.g. uses less
successive training data to achieve performance). Here, we
show cross-dataset prediction where multiple program
instructions are stacked successively for training. e.g.
numbered 1-6 (from Table 1) using training data from
BP+BF+C+HW+HP+K that are stacked together. Each
workload has ~20,000 instruction sequences on average.
We show results for two benchmarks: Back Propagation
(top) and Stream Cluster (bottom).

For this evaluation, we use the F1 score for evaluation.
We have determined that training validation needs proper
evaluation criteria [22]. For example, model-accuracy criteria
can be misleading because cache miss events are rare (e.g.,
about 10% for instruction cache). Instead, we use the F1
and Mathew Correlation Coefficient (MCC) metrics because
they better represent the predictive nature of the DTM,
when the observed value of has a low duty cycle of 3.

For Back Propagation benchmark (unrelated to back
propagation occurring when training the DTM), we show
that the LSTM performance increases and out performs
other approaches after two training data sets. In
comparison, SVM approaches take more training data and
can saturate in performance. This is a good example where
the LSTM model is able to learn new features given
additional data and improve overall performance. For
Stream Cluster, we show that LSTM maintains high
performance with increasing training data, while SVM
saturates with more data. In this example, the LSTM
model is able to use less training data to learn key features,
and it is able to retain those learnt features over successive
training sequences with more training data.

Our results are currently focused on single processor
behavior (e.g. cache misses), and there will be cases, we
cannot generalize. For example, it is readily understood
that streaming and random data access are inherently
different. Our system uses deep temporal models to learn
complex processor activities, and we do believe that this
approach can be used in many different applications. For
example, DTMs can be used to eliminate operational
overheads and to allow for user personalization by
anticipating power fluctuations, program operation, and
system faults to achieve data-driven performance gains.

GPUs have large numbers of processor cores, and
activity prediction is complex problem due to the high
level of contention among thousands of parallel threads,
and data dependencies on input data. It is important to
note that we model the GPU processor activity as a time-
series problem. Specifically, the GPU instruction
sequences (e.g. add, mov, call) are m dimensional inputs
with the occurrence of a cache miss as the binary output at
each execution cycle. As such, our DTMs are learning to

look at best sequences of instructions that predict the
occurrence of a cache miss, n cycles ahead. Furthermore,
our DTMs are generative models that learn internal
representations of hidden variables and can thus better
learn complex data sequences. In comparison, a
discriminative model, like the many learning algorithms for
perceptrons, only models output target variables, and
therefore, they cannot express complex relationships
between the observed and target variables. This is
analogous to the use of DTMs for natural language
processing (NLP) in which words in sentences can be
predicted based on proceeding sentence structure.

6. CONCLUSIONS

Deep Temporal Models (DTMs) offer a unified AI-
framework to learn and predict micro-architectural events
in modern computer architecture. They enable hardware
that is adaptive and scalable to support current and
workloads in future cognitive systems. In this short paper,
we presented initial results using DTMs to learn from
training data generated from a computer architecture
simulator. Our results show that DTMs can generalize
what it has learned to apply from one workload to another.
As such, we summarize that through a data-driven
methodology, our DTMs has extracted key features and
patterns that can infer future processor behaviors. In the

Figure 3. Results showing performance of Deep

Learning LSTM using successively more training data.

32

next step, we are evaluating low-power hardware
architectures and circuits to implement DTMs using low-
bit precision [1]. We plan to focus on the reduction in
time/energy associated with storage and movement of data.

Using DTMs, we anticipate the following benefits for
computer architecture design: 1) Designers no longer
codify and implement circuits for branch prediction or
other control logic. Instead, DTMs offer a data-driven
approach where the designers must collect sufficient
training data; 2) Compilers can analyze and identify a mix
of instructions that cause performance bottlenecks and
schedule them dynamically based on statistical inference; 3)
Processor activity can be predicted to dynamically set
voltage, current, and other system level parameters. This
can be applied to a number of applications including cyber
security in the form of anomaly detection. Specifically, the
generative DTM learns normal processor behavior, and an
active malware will change processor behavior (e.g.
unexpected branch or fault/exception). More complex
behaviors (e.g. unexpected sequences of instructions or
events) can also raise a warning (e.g. a read from memory
and transfer of data over the network).

In related future work, we intend to expand our
experiments to show system level variability (frequency,
memory subsystem, latencies, pipeline width), in addition
to workload variability. We have also applied this
methodology towards anomaly detection for cyber security
related applications.

7. ACKNOWLEDGMENTS

We would like to thank Dr. Mohamed Amer and Dr.
Vijay Reddi for their support of part of this effort. This
material is based upon work supported by the Office of
Naval Research (ONR) under contract N00014-17-C-1011,
and NSF #1526399. The opinions, findings and
conclusions or recommendations expressed in this material
are those of the author and should not necessarily reflect
the views of the Office of Naval Research, the Department
of Defense or the U.S. Government.

8. REFERENCES

[1] A. Raghavan, et al., “BitNet: Bit-Regularized Deep
Neural Networks”, arXiv:1708.04788, 2017

[2] M. Courbariaux et al., “Binarized neural networks:
training neural networks with weights and activations
constrained to +1 or -1,” arXiv:1602.02830, 2016.

[3] J. Kung, et al. "Efficient Object Detection Using
Binarized Neural Networks," JSPS, 2017.

[4] S. Han, et al., “EIE: efficient inference engine on
compresses deep neural network” arXiv preprint
arXiv:1602:01528, 2016.

[5] N. Jouppi, et al., “In-Datacenter Performance Analysis
of a Tensor Processing Unit”, ISCA 2017.

[6] J. Leng, et al. "Safe limits on voltage reduction
efficiency in GPUs: A direct measurement approach",
Proceedings of the 48th International Symposium on
Microarchitecture. ACM, 2015.

[7] D. Hanus, Smart Scheduling: Optimizing Tilera’s Process
Scheduling via Reinforcement Learning, MSEE thesis, MIT,
Feb 2013

[8] A. Mirhoseini, et al., “Device Placement Optimization
with Reinforcement Learning”, Arxiv1706.04972,2017

[9] G. E. Hinton, et al. “A fast learning algorithm for deep
belief nets” Neural Computation 2006

[10] I. Sutskever and G. E. Hinton, “Learning Multilevel
Distributed Representations for High-Dimensional
Sequences” AISTATS 2007

[11] R. Memisevic and G. Hinton. “Learning to represent
spatial transformations with factored higher-order
Boltzmann machines” Neural Computation 2010.

[12] S. Hochreiter, et al. “Gradient flow in recurrent nets:
the difficulty of learning long-term dependencies”
IEEE F. Guide Dynamical Recurrent Networks, 2001.

[13] I. Sutskever, et al., “On the importance of
initialization and momentum in deep learning” ICML
2013

[14] Y. Bengio, et al., “Advances in optimizing recurrent
networks” ICASSP 2013

[15] R. Pascanu, et al., “How to construct deep recurrent
neural networks”, arXiv:1312 2013.

[16] A. Karpathy, et al., “Large-scale Video Classification
with Convolutional Neural Networks”, CVPR 2014

[17] G. Taylor, et al., “Convolutional learning of spatio-
temporal features” ECCV 2010

[18] K. Simonyan and A. Zisserman “Two-stream
convolutional networks for action recognition in
videos”, arXiv:1406.2199, 2014.

[19] S. Ji, et al., "3D Convolutional Neural Networks for
Human Action Recognition" PAMI 2013

[20] G. Hinton, et al, "Deep Neural Networks for Acoustic
Modeling in Speech Recognition" SPIE 2012.

[21] M. Amer, et al., “Deep multimodal fusion: A hybrid
approach”, IJCV, Feb. 2017.

[22] A. Raghavan, et al. "GPU Activity Prediction using
Representation Learning", ML Systems Workshop,
arXiv:1703.09146 (2017)

[23] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long
short-term memory." Neural Computation (1997).

[24] Che, et al., “A Characterization of the Rodinia
Benchmark Suite with Comparison to Contemporary
CMP Workloads”, IISWC2010

[25] Bakhoda et al. Analyzing Cuda Workloads Using a
Detailed GPU Simulator. ISPASS2009

33

