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1. ABSTRACT 

In order to achieve high processing efficiencies, next 
generation computer architecture designs need an effective 
Artificial Intelligence (AI)-framework to learn large-scale 
processor interactions. In this short paper, we present 
Deep Temporal Models (DTMs) that offer effective and 
scalable time-series representations to addresses key 
challenges for learning processor data: high data rate, cyclic 
patterns, and high dimensionality. We present our 
approach using DTMs to learn and predict processor 
events. We show comparisons using these learning models 
with promising initial simulation results. 

2. INTRODUCTION 

Large-scale cognitive AI systems have been 
successfully deployed for a number of applications from 
image recognition to natural language processing. Such 
advancements are fueled by availability of training data and 
a high-performance computing infrastructure. At the same 
time, there has been much attention drawn in the 
computer architecture community on accelerating 
machine-learning processing to support the growth in 
cognitive AI systems. However, there is still limited 
research conducted to utilize the power of AI to design 
better computer architectures and systems. 

Today’s modern processor designs are based on 
reactive principles. For each new workload, a new 
benchmark is created, execution profiles are created, and a 
new HW accelerator is built solving merely near-term and 
a-priori known performance issues. This process causes 
unacceptable stresses on other system components, 
including power delivery network, clock synchronization, 
and memory subsystems. The end result is a reactive 
approach to the design and operation of the processor: see 
a problem, design a solution, look for the next problem, 
and repeat. What is needed is a new design paradigm that 
breaks away from this reactive design cycle to significantly 
provide orders of magnitude of improvement in power 
efficiency and computing performance. 

Processor hardware performance improvements have 
tapered off because it is becoming increasingly challenging 
to scale to lower power consumption. The problem with 
conventional system design is that it overlooks the 
interactions that can be foreseen and mitigated by taking a 
holistic look at the interactions occurring across the entire 
system. While designers would like to ideally take a holistic 
picture into account, the challenge lies in manually 
understanding and rationalizing the interactions at design 
time. This is simply beyond current capabilities, especially 
because the system designers cannot fully anticipate 
runtime activity and the consequential impact on 
performance, power and reliability. 

This short paper presents an AI-enabled approach to 
computer architecture design. We posit that the 
fundamental aspect for AI-enabled computing is the 
development of efficient, scalable ML representation 
that can learn naturally the complex processor behavior 
and events from processor data. In this paper, we explore 
the use of Deep Temporal Models (DTMs) that are 
hierarchical and multi-staged, and have been used 
successfully in large-scale image processing, with recent 
extensions to video processing. Current non-temporal 
models like Convolutional Neural Networks (CNN) treat 
data as independent and static without the inherently 
temporal properties. This is inevitably sub-optimal, 
especially from the point of view of learning. We show 
DTMs for use in computing and at the same time leverage 
temporal models that are specialized for data sequences 
rather than static data. We leverage the generative 
properties of DTMs to forecast processing and data access 
needs in forthcoming phases of the computation. 

3. BACKGROUND 

There have been multiple generations of machine 
learning (ML) applied to the computing domain. While 
there is a recent push in research for making deep learning 
processing efficient [1-5], there is a disproportionate 
amount of research using deep networks for computing. 
The first generation used Support Vector Machines (SVMs) 
and shallow networks [6] to encode logic functions, for 
example for branch prediction and power management. 
SVMs are discriminative classifiers; they may provide high 
performance in small problems, however, their complexity 
increases in large problems. For global processor behaviors 
with many cyclic patterns, SVM approaches are likely to 
give poor performance. These machine learning 
approaches have been used in processor control circuitry, 
but to the best of our knowledge, they: (1) are very 
component specific, and thus have limited functionality, (2) 
do not learn global system behaviors and do not scale well, 
and (3) use very shallow neural networks, without spatial-
temporal learning.  

The second generation attempted using modern deep 
learning techniques.  Some work focused on using 
Reinforcement Learning (RL) for task scheduling [7] and 
device placement/selection [8]. The main limitation of RL 
is that the actions of the agents and reward functions 
should be defined based on the system and task 
requirements. That is, without a well-premised learnt 
representation of processor behavior, the RL approach 
may not be effective or optimal.   

Within the AI field, DTMs are a rapidly growing 
research area driven by the need to study and exploit 
sequential data. What distinguishes DTMs from their 
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contemporaries is the use of so-called “distributed” 
representations: explaining data patterns by a set of 
interacting features instead of a category or prototype. The 
AI research field has evolved in a number of important 
ways: 1) the amount of data readily available; 2) more 
powerful computational resources to leverage that data; 
and, 3) improved algorithms for training in both 
supervised and unsupervised learning modes.  

The introduction of Deep Belief Networks (DBNs) by 
Hinton et al. [9] is widely viewed as the breakthrough that 
stimulated the modern view of Deep Learning. Up to this 
point, classical multi-layer architectures such as deep neural 
networks were known in the ML community but were 
universally accepted as difficult to train in practice. Hinton 
and colleagues showed that DBNs could be grown 
incrementally, by composing simple models called 
Restricted Boltzmann Machines (RBMs). The models were 
trained in sequence, each model learning to represent the 
one before it. Once this “greedy” initialization strategy 
completed, the model could be fine-tuned end-to-end. 
Labels could be introduced in this second stage of learning. 
By first discovering representations, learning became 
effective and efficient. DTMs are evolved by extending 
RBMs to capture temporal dependencies [10, 11].  

Sutskever et al. [12,13] have demonstrated progress of 
memorization problems using Recurrent Neural Networks 
(RNNs) that have simple, unimodal output distributions 
that are better suited for predictions tasks. Bengio’s group 
[14,15] has identified and summarized strategies for 
constructing and optimizing deep RNN models. They have 
found that clipping gradients, leaky integration, advanced 
momentum, more powerful output probability models, and 
sparser gradients generally help generalization performance 
as well as training performance. With advancement in 
DTMs (e.g. RBMs, RNN/LSTMs), a number of AI 
applications have been successful demonstrated: human 
activity recognition from video [16-18], modeling of 3D 
volumes [19], and speech processing [20].   

None of the prior approaches look at the computing 
problem from a deep temporal representative-learning 
point of view, nor address the generative side for 
predicting expected resource requirements. Our work 
described in this paper, covers DTMs that handle temporal 
data in a unified manner, since both local and global 
information are combined and analyzed as an end-to-end 
system.  

Our key objective is to lay the foundation for a 
proactive computing platform that is adaptive and can 
manage its own operational needs. The ultimate goal is to 
eliminate the penalties to system design and operation that 
arise from the use of incremental circuit techniques and 
micro-architectural changes, which increases system 
complexity and cost, and affects power consumption – all 
for the sake of performance over a generalized set of 
benchmark suites that may have little in common with the 
computations that will actually be executed on the machine. 
More specifically, hardware designers tend to overdesign to 

provide a minimum performance guarantee for software, 
and this tiered approach between hardware and software 
has driven processor architectures to be complex, rigid and 
over-designed. For AI-enabled design to be successful, we 
advocate an approach that eliminates system overheads, 
having resource controlled by a data-driven AI-engine. 

4. DEEP TEMPORAL MODELS 

We are developing DTMs to learn and predict data-
driven micro-architectural behaviors to achieve an optimal 
(or near-optimal) execution flow. The goal is to learn 
complex interactions between processor events that have 
large variations across different execution phases.  We train 
the DTMs using a training dataset comprising of recorded 
and simulated performance statistics during processor 
operation using an architecture simulator. We want to 
provide a method where the AI-aspects are not 
overdesigned and scale across different workloads. In the 
future, we can extend the training using adversarial and 
reinforcement learning approaches to capture events not 
previously observed or characterized in a benchmark suite. 
At runtime, the trained DTMs will recognize patterns of 
micro-architectural events, and will infer predictions on 
future behavior of the workload. An effective prediction 
must meet two criteria: 1) it must anticipate a future 
behavior accurately to prevent un-optimized or 
unnecessary hardware operation. 2) it must predict a new 
execution phase or resource need with enough lead time to 
be able to initiate (re)configuration without throttling 
platform operation. 

DTMs recognize phases of program execution based 
on signatures of code sequences and processor states. The 
generative model allows us to reconstruct signals and 
patterns through inference, so in essence, we can predict 
future processor behavior. Much like how gesture 
recognition is trained on motion caption data [21], we are 
capturing multi-dimensional data from processor operation, 
and using that data to train our network.  

In this paper, we demonstrate the use of DTMs to 
predict aspects of processor operations based on spatial-
temporal analysis, extending our paper using a new variant 
of the Conditional Restricted Boltzmann Machines 
(CRBMs) [22], with Long-Short-Term Memory (LSTM). 
Due to space constraints, we 
will present LSTM results in 
this paper. 

 Figure 1 shows the 
LSTM deep learning model 
we used to model GPU 
processor activity as a time-
series problem. The GPU 
instruction sequences (e.g. 
add, mov, call) are m 
dimensional inputs with the 
occurrence of a cache miss as 
the binary output at each 
execution cycle. The LSTM 

Figure 1. LSTM Deep 
Temporal Model 

30



 

model is then trained to look at a sequence of instructions, 
and predict the occurrence of a cache miss, n cycles ahead. 
The LSTM model uses 2048-neuron LSTM [23] cell in 4 
successive layers.  To improve regularization, a drop out 
ratio of 0.5 is applied after each layer. A sigmoid layer 
outputs the probability of a cache miss. A threshold of 0.5 
is applied to create a binary output that represents the 
cache miss. 

In our experiments we consider each workload (each 
with ~20,000 instructions) of the Rodinia Benchmark, and 
stack five of these together to form the training set. The 
training converges in usually 2000 epochs using Adagrad, 
consuming 1 hour on a Nvidia Titan X GPU. The testing 
is done on a workload by predicting n cycles ahead. This 
completes in <1 minute. 

5. Experiments 

We designed experiments to explore and understand 
the complexity of deep learning algorithms required to 
learn processor (CPU/GPU) operations. We used the 
Rodinia Benchmark [24] software suite, which consists of a 
number of compute intensive kernels used by researchers 
to characterize system performance. We setup a GPU 
simulator [25] to run the software suite, and we trained our 
algorithms to predict processor events. Table 1 shows the 
twelve (12) programs of the Rodinia Benchmark selected 
to run through the GPU simulator simulating a NVidia 
GTX 480. Executed instructions across cores and data 
cache read miss (DC_RM) data are extracted from all of 
the programs. 

Figure 2 shows the results of learning workloads from 
one set of benchmarks to apply to another set of 
benchmarks. Our learning algorithms are set to predict 
cache misses as an indication of how we can predict 
processor operational state. We show that deep learning 
models (LSTM) can learn temporal sequences and can 
outperform regular machine learning algorithms (SVM). In 
addition, LSTM can outperform an approach (naïve 
baseline) that randomly predicts. For the Baseline, we use 
the true label ratio of the training set as the prediction 
probability. We preprocessed data for the SVM in two 
ways. The first method included time as a feature, by 
stacking a set of features and augmenting the data where 
each input consists of a set of instruction sequences 
spanning the number of cycles. The second method fed 
the data directly to the SVM without augmentation. It was 
seen that the time-based augmentation of the data did not 
give any performance benefit, and exponentially increased 

the training set size, increasing training time. We omit the 
results of the first method and present comparisons of the 
second method for brevity. 

In these experiments, we chose n = 32, to predict 
cache misses 32 cycles ahead from a given cycle. This 
window can be set during training, and we have shown in 
[22] for windows as large as 128 cycles. Larger window 
sizes would require more memory storage in the LSTM 
network. Five (5) randomly picked training programs are 
used as training programs to predict misses of an unseen 
test program. Experiments were conducted with n in the 
range of [1..128] with similar behavior as observed in 
figure 2. The CFD Solver (C) performs well with the 
random predictions of the baseline giving us an outlier in 
the benchmark. We attribute to the unstructured grid and 
the random behavior of fluid dynamics workload. Each 
workload has ~20,000 instruction sequences on average. 
This results in a sampling size of ~20,000 sequences per 
workload. 

One salient result is the demonstration that DTMs 
can generalize what it has learned to apply from one 
workload to another. Our results show that compute heavy 
workloads may have common patterns observable through 
the histogram of executed instructions, and that these 
patterns can be learned. To further improve performance, 
we can also use memory addresses and other processor 
information as inputs to the DTMs. 

There are several takeaway messages in Figure 2. First, 
the intent of Figure 2 is to show how DTMs can learn to 
predict cache misses from instruction sequences alone. 
There are many other inputs to DTM that can be 
considered to improve prediction accuracy. Second, we 
show how DTMs can generalize to learn from different 
benchmarks. Specifically, we can treat DTMs as a tool to 
craft new processor control strategies by providing the 
right training data. As such, we break away from the 
reactive design principles that plague current design 
methodology. Third, we show that using a data driven 
method, designers can then target smaller subdomains 
rather than having a generalized solution for all 

 
Table 1. The Rodinia workload type and problem space 

 
Figure 2. Generalized DTM learning on five random 
workloads (LSTM vs. SVM) in predicting data cache 

misses. (Training data from Rodinia Benchmark -- BP, 
BF...SC). 
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benchmarks. That is, several cache policies can be learned 
independently and loaded into hardware at runtime. In this 
manner, designers can move away from overdesigning 
complex control mechanisms to cover all possible 
scenarios. 

Similarly, in Figure 3, we show that LSTM can 
outperform SVM with less data samples (e.g. uses less 
successive training data to achieve performance). Here, we 
show cross-dataset prediction where multiple program 
instructions are stacked successively for training. e.g. 
numbered 1-6 (from Table 1) using training data from 
BP+BF+C+HW+HP+K that are stacked together. Each 
workload has ~20,000 instruction sequences on average. 
We show results for two benchmarks: Back Propagation 
(top) and Stream Cluster (bottom). 

For this evaluation, we use the F1 score for evaluation. 
We have determined that training validation needs proper 
evaluation criteria [22]. For example, model-accuracy criteria 
can be misleading because cache miss events are rare (e.g., 
about 10% for instruction cache). Instead, we use the F1 
and Mathew Correlation Coefficient (MCC) metrics because 
they better represent the predictive nature of the DTM, 
when the observed value of has a low duty cycle of 3. 

For Back Propagation benchmark (unrelated to back 
propagation occurring when training the DTM), we show 
that the LSTM performance increases and out performs 
other approaches after two training data sets. In 
comparison, SVM approaches take more training data and 
can saturate in performance. This is a good example where 
the LSTM model is able to learn new features given 
additional data and improve overall performance. For 
Stream Cluster, we show that LSTM maintains high 
performance with increasing training data, while SVM 
saturates with more data. In this example, the LSTM 
model is able to use less training data to learn key features, 
and it is able to retain those learnt features over successive 
training sequences with more training data. 

Our results are currently focused on single processor 
behavior (e.g. cache misses), and there will be cases, we 
cannot generalize. For example, it is readily understood 
that streaming and random data access are inherently 
different. Our system uses deep temporal models to learn 
complex processor activities, and we do believe that this 
approach can be used in many different applications. For 
example, DTMs can be used to eliminate operational 
overheads and to allow for user personalization by 
anticipating power fluctuations, program operation, and 
system faults to achieve data-driven performance gains. 

GPUs have large numbers of processor cores, and 
activity prediction is complex problem due to the high 
level of contention among thousands of parallel threads, 
and data dependencies on input data. It is important to 
note that we model the GPU processor activity as a time-
series problem. Specifically, the GPU instruction 
sequences (e.g. add, mov, call) are m dimensional inputs 
with the occurrence of a cache miss as the binary output at 
each execution cycle. As such, our DTMs are learning to 

look at best sequences of instructions that predict the 
occurrence of a cache miss, n cycles ahead. Furthermore, 
our DTMs are generative models that learn internal 
representations of hidden variables and can thus better 
learn complex data sequences. In comparison, a 
discriminative model, like the many learning algorithms for 
perceptrons, only models output target variables, and 
therefore, they cannot express complex relationships 
between the observed and target variables. This is 
analogous to the use of DTMs for natural language 
processing (NLP) in which words in sentences can be 
predicted based on proceeding sentence structure.  

6. CONCLUSIONS 

Deep Temporal Models (DTMs) offer a unified AI-
framework to learn and predict micro-architectural events 
in modern computer architecture. They enable hardware 
that is adaptive and scalable to support current and 
workloads in future cognitive systems. In this short paper, 
we presented initial results using DTMs to learn from 
training data generated from a computer architecture 
simulator. Our results show that DTMs can generalize 
what it has learned to apply from one workload to another. 
As such, we summarize that through a data-driven 
methodology, our DTMs has extracted key features and 
patterns that can infer future processor behaviors. In the 

 

 
Figure 3. Results showing performance of Deep 

Learning LSTM using successively more training data. 
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next step, we are evaluating low-power hardware 
architectures and circuits to implement DTMs using low-
bit precision [1]. We plan to focus on the reduction in 
time/energy associated with storage and movement of data. 

Using DTMs, we anticipate the following benefits for 
computer architecture design: 1) Designers no longer 
codify and implement circuits for branch prediction or 
other control logic. Instead, DTMs offer a data-driven 
approach where the designers must collect sufficient 
training data; 2) Compilers can analyze and identify a mix 
of instructions that cause performance bottlenecks and 
schedule them dynamically based on statistical inference; 3) 
Processor activity can be predicted to dynamically set 
voltage, current, and other system level parameters. This 
can be applied to a number of applications including cyber 
security in the form of anomaly detection. Specifically, the 
generative DTM learns normal processor behavior, and an 
active malware will change processor behavior (e.g. 
unexpected branch or fault/exception). More complex 
behaviors (e.g. unexpected sequences of instructions or 
events) can also raise a warning (e.g. a read from memory 
and transfer of data over the network). 

In related future work, we intend to expand our 
experiments to show system level variability (frequency, 
memory subsystem, latencies, pipeline width), in addition 
to workload variability. We have also applied this 
methodology towards anomaly detection for cyber security 
related applications. 
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