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Abstract—Performing the inference step of deep learning in
resource constrained environments, such as embedded devices,
is challenging. Success requires optimization at both software
and hardware levels. Low precision arithmetic and specifically
low precision fixed-point number systems have become the
standard for performing deep learning inference. However,
representing non-uniform data and distributed parameters (e.g.
weights) by using uniformly distributed fixed-point values is
still a major drawback when using this number system. Re-
cently, the posit number system was proposed, which represents
numbers in a non-uniform manner. Therefore, in this paper
we are motivated to explore using the posit number system to
represent the weights of Deep Convolutional Neural Networks.
However, we do not apply any quantization techniques and
hence the network weights do not require re-training. The
results of this exploration show that using the posit number
system outperformed the fixed point number system in terms
of accuracy and memory utilization.
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I. INTRODUCTION

Deep learning, as a particular form of hierarchical rep-

resentational learning [1], has shown promise in several

applications such as computer vision [2], natural language

processing [3], speech recognition [4], robotics [5] and

medical applications [6]. The success of deep learning

stems from its ability to learn from raw and unstructured

data [1]. Deep Convolutional Neural Networks (DCNN) are

commonly used in Deep learning, with stochastic gradient

descent as their learning mechanism [7].

Although DCNNs achieve state-of-the-art accuracy as

compared to other machine learning approaches, they exhibit

shortcomings such as long latency, power inefficiency, and

long training durations. For instance, training ResNet-50 (50

layers) [8] on the ImageNet dataset [9] requires 256 GPUs

[10]. Another example, AlphaGo, was trained for months

with 1202 CPUs and 176 GPUs to beat Lee Sedol, an 18-

time world champion, at the strategic board game ”Go”

[11]. According to these examples, training deep neural

networks even with the resources in data centers has a lot

of limitations. On the other hand, deep learning inference

is less complex than deep learning training. Moreover, the

limitations for implementing deep learning inference on

conventional hardware such as CPUs and GPUs has been

addressed by digital neuromorphic chips such as TPU [12].

However, this chip is specially designed for data centers.

Therefore, designs for digital neuromorphic chips to im-

plement DCNNs with real-time performance on low-power

embedded platforms, mobile devices, and IoT devices, are

currently in the research exploration phase [13], [14]. Low

precision arithmetic is a common approach to reduce power

consumption and improve the real-time performance of deep

learning applications on embedded devices.

Among different number systems used for performing

deep learning inference with low precision arithmetic, the

fixed-point number system shows the most promising trade-

off between accuracy and computational complexity [15]–

[18]. However, real numbers are represented uniformly by

a fixed-point number system which is not suitable for deep

learning applications since the weights and data have a non-

uniform distribution [16]. Recently, a posit number system

was proposed as an alternative to the floating point number

system [19]. This number system has a unique non-linear

numerical representation characteristic for all numbers in a

dynamic range which distinguishes it from other number

systems such as fixed and floating point. As a result, in this

introductory paper, we are motivated to explore the use of

the posit representation in DCNNs for digit recognition and

image classification tasks.

We compare the fixed-point number system and the posit

number system to represent weights of three DCNNs with 4,

5 and 8 layers on MNIST [20], Cifar-10 [21] and ImageNet

[9] datasets respectively. The posit number system outper-

formed the fixed-point number system in terms of accuracy

and memory utilization when the two number systems are

compared under the constraint that they both have the same

dynamic range ([-1,1]).

The rest of this paper presents previous works on low

precision deep learning inference and introduces the posit

number system in section II, the proposed DCNNs using

the posit number system are discussed in section III, the

comparative results, in terms of accuracy and memory

utilization, between the posit number system and the fixed-

point number system to represent weights of proposed

DCNNs are presented in section IV.
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II. BACKGROUND

A. Low precision deep learning inference

In recent literature studies on DCNNs, focusing on im-

proving the computational efficiency during inference by

using limited precision for weights and activations, Judd

et al. represent weights by the dynamic fixed-point num-

ber system and perform computations using the floating

point number system [22]. In this approach, the energy

consumption for memory access operations obtained while

implementing different deep neural networks on various

datasets is reduced by an average of 15% [22]. Following

this research, the 8-bit floating point number system used

to represent weights of AlexNet and VGG-16 [23] and was

evaluated on the ImageNet dataset [24]. The results indicated

that it is possible to represent 20% of the weights in the 8-bit

floating point representation with less than 1% degradation

of accuracy. Finally, Gysel et al. successfully performed deep

learning inference using the AlexNet architecture on the

ImageNet dataset, with 8-bit dynamic fixed-point weights

and 8-bit dynamic fixed-point data, resulting in less than 1%

degradation of accuracy [16]. However, the networks needed

to be retrained in order to attain this level of accuracy.

After the success of performing deep learning inference

by using an 8-bit precision representation of weights and

data, researchers have been further motivated to squeeze

the representation to below 8-bits, in particular, the 1-

bit (binarized representation) [17], [25] and 2-bit (ternar-

ized representation) [18], [26]. Although, by using these

representations, multiplication operations in a deep neural

network are removed or converted to sign detection op-

erations, the corresponding significant degree of degrada-

tion in accuracy overwhelms the computational advantage.

Therefore, evaluating a deep learning inference model with 8

layers or more (e.g. AlexNet, GoogLeNet) on large datasets

(e.g., ImageNet), with less than 8 bits to represent each of

the weights and data values, without substantial accuracy

degradation and/or retraining, is still an open question.

B. Posit number system

The posit number system is a type of tapered accuracy

number system [27], which means that numbers with small

exponents are more accurate than numbers with large expo-

nents [19]. The challenges encountered by the floating-point

number system such as manipulating overflow, underflow,

double zero and exception are addressed in this number

system. The posit number system format defined as P(n,es)

where n refers to the total number of bits in this system and

es indicates the number of exponent bits [19]. Each number

in this system, as shown by Eq. 1 [19], is indicated by

useed, exponent, rvalue (responsible for finding the number

regime) and fraction (to indicate the precision).

X = (−1)sign × (useed)rvalue × 2exponent × (1 + fraction) (1)

For instance, 2.56 in the posit number system with P(16,1)

format is represented by 4 as a useed, 1 as an exponent,
0 as an rvalue and 0.280 as a fraction as shown by Fig.

1. Note that the conversion from decimal floating point to

posit numbers are explained in detail in section III.
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Figure 1. Representation of a number in the posit number system with
P(16,1) format [19]

III. DCNNS WITH POSIT REPRESENTATION

In this paper, we explore the effects of using the posit

number system (used to represent weights), on the accuracy

and memory utilization of the DCNN during inference. To

achieve this goal, the weights are converted from the original

single floating number system to the new posit number

system during memory read and write operations. On the

other hand, the posit number system is converted back to

a single floating point number system during computational

operations as needed by standard computing architectures.

The proposed DCNNs architecture is shown in Fig. 2.

This architecture is similar to DCNNs architecture which

is proposed by [22] except we use a posit number system

which has advantages to represent weights of DCNNs non-

uniformly. This architecture can be fragmented into three

sub-modules which are explained in subsequent subsections.

A. Conversion from posit to floating point

The first step is to convert the posit number to a decimal

floating point number and then convert to a binary floating

point number. The conversion from a posit to a decimal

floating point number is divided in four steps [19]: (i)

extracting the sign bit; (ii) extracting the regime bit; (iii)

extracting the exponent bit; (iv) extracting the fraction bit.

The most significant bit in posit representation indicates the

sign bit. The regime bit is represented by unary arithmetic

[19]. Therefore, when extracting the regime value (rvalue),

the algorithm starts to count the number of consecutive one’s

or zero’s after a sign bit until it reaches a bit of the opposite

value (zero or one respectively). Then, the result is negated

if the bits counted are zeros or is decremented by 1 if the bits

counted are ones. The exponent bits are represented by an

unsigned integer and are thus easily extracted from the posit

number bit string. The rest of bits in the bit string are fraction

bits. The decimal floating point number is converted into a

binary floating point number by dividing or multiplying by

2 until the number is in the range of [1, 2) [19].

20



Figure 2. High level overview of the DCNN architecture implementation which uses the posit number system to represent the weights

B. DCNNs

In DCNNs, the features are extracted using convolutional

layers. This feature is shown by vector Fn = (f1, f2, ..., fm),
where n indicates the number of images in the dataset, and

m shows the feature vector dimension. Then the features are

classified by a network of fully connected layers. In the last

layer, the softmax layer is used as a classifier to minimize

y− f∗(x,w); where y defines a label, x denotes an input to

the softmax layer, w denotes the weights in softmax layer

and f∗ is the best approximation function [7].

C. Conversion from floating point to posit

This conversion consists of two steps [19]: (i) converting

the binary floating point number system to the decimal

floating point number system; (ii) converting the binary

floating point number system to the posit number system.

The first conversion is performed by multiplying the fraction

by two raised to the power of the exponent. Then the decimal

floating point number achieved in the first step is converted

into a posit number by dividing or multiplying it by two until

the number is in the range [1, useed) in order to find the

regime bit. Then, this process is continued until the number

is in the range [1, 2) in order to find the exponent. The

remaining bits are the fraction [19].

IV. EVALUATION

The new approach is evaluated on three datasets: (i)

MNIST dataset; (ii) CIFAR-10 dataset; (iii) subset of the

ImageNet dataset. The MNIST dataset (handwritten nu-

merical digits dataset), and others datasets are collected

for assessing the performance of new techniques on basic

image recognition tasks. Different DCNNs are used for

each dataset, and the single floating point number system

is selected for a baseline implementation. The baseline is

implemented using the Keras API [28] and the accuracy

results are as shown in Table I.

Table I. Top-1 accuracy of 3 different neural networks

Task Dataset # inference set Network layers Top-1 accuracy

Digit classification MNIST 10000 LeNet 2 Conv and 2 FC 99.03%
Image classification CIFAR-10 10000 Convnet 3 Conv and 2 FC 68.45%
Image classification ImageNet 10000 AlexNet 5 Conv and 3 FC 55.45%

In this paper, the weights are represented by a variable

length fixed-point number system (with a maximum bit

length of 16 bits) and 8-bit posit number system. To repre-

sent weights in the variable fixed-point number system only

one bit is considered for the integer part and the fractional

part is varied in a range of [0,15] bits, as most of the weights

in well explored DCNNs are in the [−1, 1] interval. To rep-

resent weights with the posit number system, we selected the

P(i,0) format where i is varied within the range [2,8]. Note

that the exponent selected is zero. The reason behind this

selection is because the dynamic range of the posit number

system with a zero exponent is the closest approximation to

the weights’ dynamic range, as compared to other possible

options for exponent value. Among these posit formats,

P(2,0) has the smallest dynamic range ([−1, 1]), while other

posit formats have a larger dynamic range. However, variable

length fixed point number systems have the same dynamic

range. Therefore, we are motivated to normalize all the

formats in posit number system and call it the normalized

posit number system. In this version of the posit number

system, all of the formats have the same dynamic range of

[−1, 1]. The relative accuracy results for different tasks are

shown in Fig. 3.

The normalized posit number system outperformed other

number systems in terms of accuracy with fewer bits. The

results demonstrate that it is possible to perform LeNet,

ConvNet, and AlexNet with 5 bits, 7 bits and 7 bits re-

spectively, using the posit number system, with less than

1% accuracy degradation in comparison to performance of

the same networks with 7 bits, 11 bits and 9 bits respec-

tively while using the variable length fixed point number
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(a) (b) (c)

Figure 3. Results showing the relative accuracy to the baseline for DCNN implementations on various datasets with representation of weights using
variable length fixed point and normalized posit number systems. (a) Relative Accuracy results for LeNet on MNIST dataset. (b) Relative Accuracy results
for ConvNet on Cifar-10 dataset. (c) Relative Accuracy results for AlexNet on ImageNet dataset.

system. This reduces memory utilization by 28.6%, 36.4%

and 23% as compared to standard state of the art variable

length fixed point implementations [22], [29], and can also

significantly reduce the number of memory accesses through

memory concatenation schemes. Note that this improvement

is achieved without using quantization or retraining the

DCNNs.

V. CONCLUSION

We explore using the posit number system to represent

weights of three DCNNs on MNIST, Cifar-10, and ImageNet

datasets. The normalized posit number system outperformed

the fixed point number system in terms of accuracy, with

fewer number of bits used to represent weights. By using

a memory concatenation encoding scheme, the number of

memory accesses required to transfer the weights reduces

significantly, as well as the total energy consumption for the

same task. For future work, we will explore the effect of low

precision data representation using the posit number system

and implement DCNNs using the posit representation for

both storage and computation.
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