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Introduction

Why Deep Learning Inference 
on Embedded Devices?

Most digital neuromorphic chips are specialized for data centers

Drawbacks of performing Deep Learning inference in data centers:
❖ Latency
❖ Accessibility
❖ Security
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Introduction

What are the challenges in 
designing/performing Deep 
Learning architectures for 

embedded devices ?

❖ real time performance
❖ Energy consumption

Solutions for energy reduction ? ❖ Low precision Arithmetic
➢ Fixed-point number system 

3.14159 26535 3.14
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Introduction

Current Approaches
❖ Most previous work requires 

➢ Quantization techniques
➢ Retraining

What is missing ?
❖ Fixed-point number system represents numbers 

uniformly 
❖ The parameters are distributed non-uniformly

What is the solution ?

❖ Using Posit Number System [5,6]
➢ Tapered number system [7] 
➢ (non-uniform distribution)
➢ More accurate than floating point
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Posit Number System

❖ Define : n= number of bits
es= number of exponent bits

❖ Proposed by John L. Gustafson, 2017 [5,6] 
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Posit Number System

Example:  
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Posit Number System
Conversion from Posit to real number
❖ Sign  
❖              → Leading zero detection, 

Leading one detection
❖ Exponent value
❖ Fraction value 

Conversion from real number to Posit 
❖            = Divide or multiply by 2 → [1,useed)
❖ exponent=Divide or multiply by 2 → [1,2)
❖ Fraction = rest of bits
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Proposed Architecture
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Experiments

Task: ❖ Handwritten numeral classification, Image classification  

Parameters: ❖ Weights

Number Systems : ❖ Single Precision Floating Point Number System
❖ Variable Length Fixed-point Number System

➢ Integer part = 1 bit
➢ Fraction part = [0,15]

❖ Normalized Posit Number System , p(i,0) where i = [2,8]

Deep Neural Networks: ❖ LeNet-4 (2 Conv, 2 FC), ConvNet (3 Conv, 2 FC), AlexNet (5 Conv, 3 FC)

Metric: ❖ Top-1 accuracy, memory utilization, memory access 
9



Datasets
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❖ MNIST Dataset [9]
➢ Categories = 10
➢ Inference = 10000

❖ Cifar-10 Dataset [11]
➢ Categories = 10
➢ Inference = 10000

❖ Subset of ImageNet [13]
➢ Categories =10
➢ Inference = 10000



Baseline Results

Task Dataset # inference set Network Layer Top-1 Accuracy

Digit Classification MNIST 10000 Lenet 2 Conv and 2 FC 99.03%

Image Classification CIFAR10 10000 Convnet 3 Conv and 2 FC 68.45%

Image Classification ImageNet 10000 AlexNet 5 Conv and 3 FC 55.45%

Single Precision Floating Point Number System:
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Results for proposed architecture on different datasets

MNIST CIFAR-10 ImageNet
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Summary of Results
Dataset Network # bits

 ( FP)
# bits (FIX)

1% accuracy 
degradation

# bits ( NP )
1% accuracy 
degradation 

Memory utilization 

MNIST Lenet 32 7 5 28.6%

CIFAR10 Convnet 32 11 7 36.4% 

ImageNet AlexNet 32 9 7 23%

FP = Floating Point    FIX = Fixed-point       NP = Normalized posit

● It can also reduce the number of memory accesses through memory concatenation schemes.
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Conclusions

❖ Exploring the use of Posit Number System in DNNs
➢ Weights
➢ 3 DCNNs and 3 Datasets
➢ Posit outperformed the fixed-point implementations in terms of accuracy and memory utilization
➢ We estimate that the use of Posit can help reduce the number of memory accesses

❖ Future work
➢ Hardware implementation
➢ Consideration of conversion overheads
➢ Using the Posit number system for activation 
➢ Posit number system for other deep neural networks and Training Deep Learning Networks
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Questions
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