

Deep Learning Inference on Embedded Devices: Fixed-Point vs Posit

Seyed Hamed Fatemi Langroudi, Tej Pandit, Dhireesha Kudithipudi

Neuromorphic AI Lab Department of Computer Engineering Rochester Institute of Technology

EMC² Workshop, March 25, 2018

Introduction

Why Deep Learning Inference on Embedded Devices?

Most digital neuromorphic chips are specialized for data centers

Drawbacks of performing Deep Learning inference in data centers:

- Latency
- Accessibility
- Security

Introduction

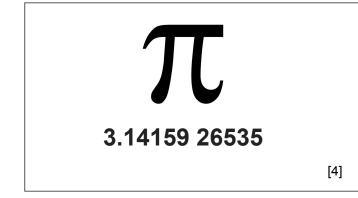
What are the challenges in designing/performing Deep Learning architectures for embedded devices ?

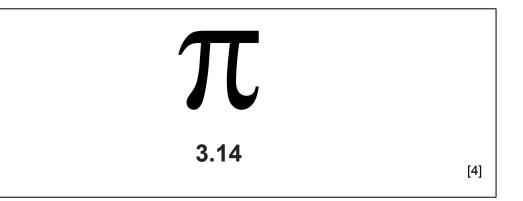
real time performance

Energy consumption

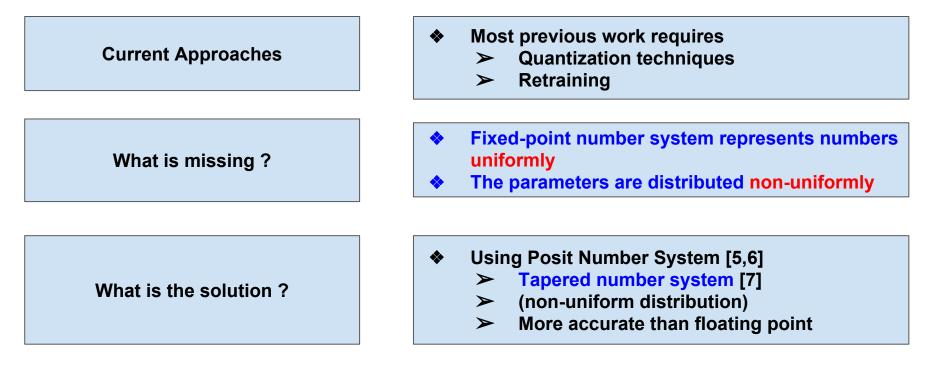
Solutions for energy reduction ?

Low precision Arithmetic ➤ Fixed-point number system





Introduction



Posit Number System

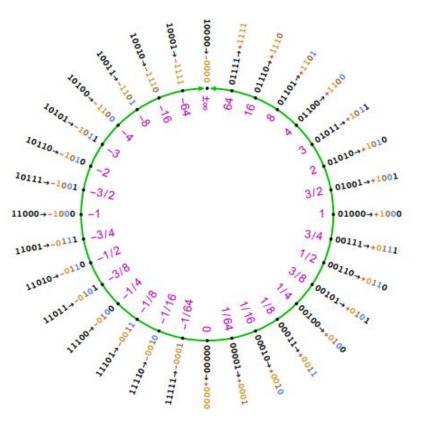
Proposed by John L. Gustafson, 2017 [5,6]

Define:
$$p_{(n,es)}$$
 n= number of bits
es= number of exponent bits
 $useed = 2^{2^{es}}$
 $min = useed^{-n+2}$
 $max = useed^{n-2}$
Interpret to the set of t

 $X = (-1)^{sign} imes (useed)^{r_{value}} imes 2^{exponent} imes (1+fraction)$

Posit Number System

Example:
$$P_{(5,1)}$$
 $useed = 4$ $max = 64$ $min = 1/64$



Posit Number System

Conversion from Posit to real number

- Sign
- Exponent value
- Fraction value

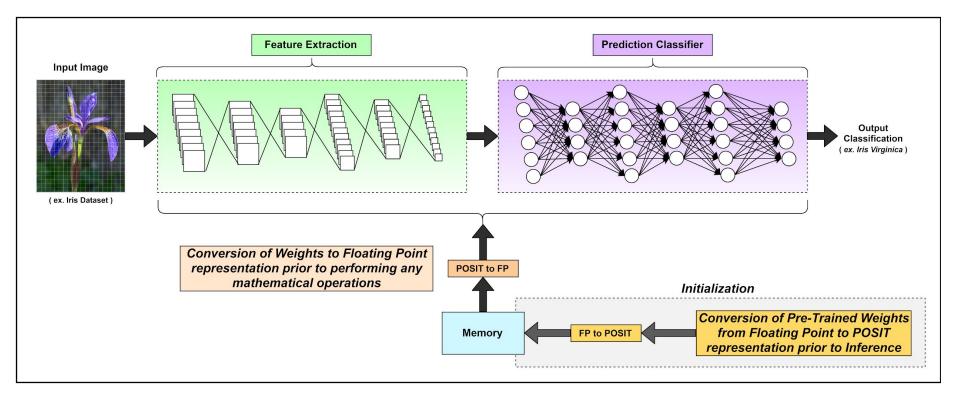
Conversion from real number to Posit

- r_{value} = Divide or multiply by 2 \rightarrow [1,useed)
- exponent=Divide or multiply by $2 \rightarrow [1,2)$
- Fraction = rest of bits

$$X_p = \begin{bmatrix} \mathbf{S} & \mathbf{r} & \mathbf{r'} & \mathbf{e} & f_{11} & f_{10} & f_{9} & f_{8} & f_{7} & f_{6} & f_{5} & f_{4} & f_{3} & f_{2} & f_{1} & f_{0} \end{bmatrix}$$
$$X_b = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} \end{bmatrix}$$

 $X_d = 4^0 \times 2^1 \times (1 + 0.280) = 2.56$

Proposed Architecture



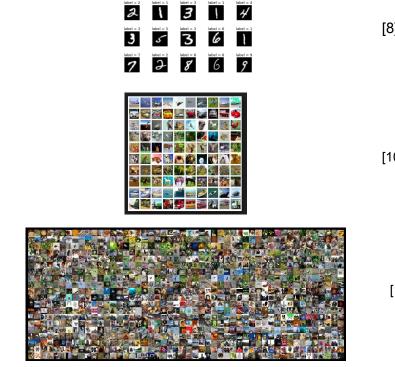
Experiments

Task:	 Handwritten numeral classification, Image classification 				
Parameters:	✤ Weights				
Number Systems :	 ♦ Single Precision Floating Point Number System ♦ Variable Length Fixed-point Number System > Integer part = 1 bit > Fraction part = [0,15] ♦ Normalized Posit Number System , p_(i,0) where i = [2,8] 				
Deep Neural Networks:	LeNet-4 (2 Conv, 2 FC), ConvNet (3 Conv, 2 FC), AlexNet (5 Conv, 3 FC)				
Metric:	 Top-1 accuracy, memory utilization, memory access 				

Datasets

- * MNIST Dataset [9]
 - Categories = 10 \succ
 - Inference = 10000 \succ

- * Cifar-10 Dataset [11]
 - Categories = 10 \succ
 - Inference = 10000 \succ
- * Subset of ImageNet [13]
 - Categories =10 \succ
 - Inference = 10000 \succ



041

9

5

[8]

[10]

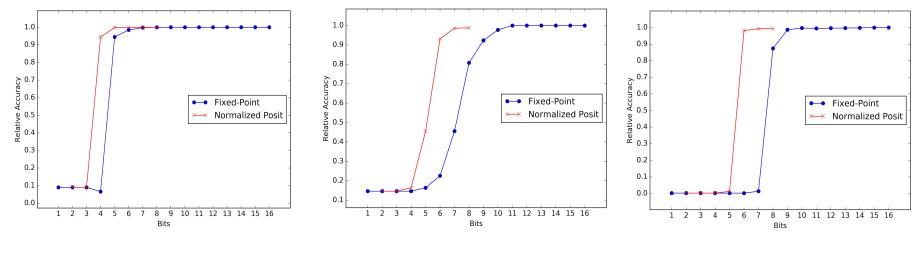
[12]

Baseline Results

Single Precision Floating Point Number System:

Task	Dataset	# inference set	Network	Layer	Top-1 Accuracy
Digit Classification	MNIST	10000	Lenet	2 Conv and 2 FC	99.03%
Image Classification	CIFAR10	10000	Convnet	3 Conv and 2 FC	68.45%
Image Classification	ImageNet	10000	AlexNet	5 Conv and 3 FC	55.45%

Results for proposed architecture on different datasets



MNIST

CIFAR-10

ImageNet

Summary of Results

Dataset	Network	# bits (FP)	# bits (FIX) 1% accuracy degradation	# bits (NP) 1% accuracy degradation	Memory utilization
MNIST	Lenet	32	7	5	28.6%
CIFAR10	Convnet	32	11	7	36.4%
ImageNet	AlexNet	32	9	7	23%

FP = Floating Point FIX = Fixed-point NP = Normalized posit

• It can also reduce the number of memory accesses through memory concatenation schemes.

Conclusions

Exploring the use of Posit Number System in DNNs

- > Weights
- ➢ 3 DCNNs and 3 Datasets
- > Posit outperformed the fixed-point implementations in terms of accuracy and memory utilization
- > We estimate that the use of Posit can help reduce the number of memory accesses

Future work

- Hardware implementation
- Consideration of conversion overheads
- Using the Posit number system for activation
- > Posit number system for other deep neural networks and Training Deep Learning Networks

Questions

References

- 1. Danny Shapiro, "Where Cars Are the Stars: NVIDIA AI-Powered Vehicles Dazzle at GTC Europe" https://blogs.nvidia.com/blog/2017/10/12/electric-autonomous-vehicles-gtc-europe/, 2017
- 2. https://fedotov.co/watch-amazon-first-package-delivered-drone/
- 3. <u>http://www.aberdeenessentials.com/techpro-essentials/an-iot-deviceto-protect-your-iot-devices/</u>
- 4. https://phys.org/news/2010-08-japanese-whizzes-news-pi-.html
- 5. Gustafson, John L., and Isaac T. Yonemoto. "Beating Floating Point at its Own Game: Posit Arithmetic." *Supercomputing Frontiers and Innovations* 4.2 (2017): 71-86.
- 6. John L. Gustafson, "Posit Arithmetic", Oct. 2017, https://posithub.org/docs/Posits4.pdf
- 7. Morris, Robert. "Tapered floating point: A new floating-point representation." *IEEE Transactions on Computers* 100.12 (1971): 1578-1579.
- 8. http://corochann.com/mnist-dataset-introduction-1138.html
- 9. LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.
- 10. https://www.cs.toronto.edu/~kriz/cifar.html
- 11. Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple layers of features from tiny images." (2009).
- 12. "ImageNet Data Set" http://vision.stanford.edu/resources_links.html
- 13. Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge." International Journal of Computer Vision 115.3 (2015): 211-252.