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Abstract—It is a well-established fact that CNNs are robust
enough to tolerate low precision computations without any
significant loss in accuracy. There have been works that exploit
this fact, and try to allocate different precision for different
layers (for both weights and activations), depending on the
importance of a layer’s precision in dictating the prediction
accuracy. In all these works, the layer-wise precision of weights
and activations is decided for a network by performing an
offline design space exploration as well as retraining of weights.
While these approaches show significant energy improvements,
they make global decisions for precision requirements. In this
project, we try to answer the question ”Can we vary the inter-
and intra-layer bit-precision based on the region-wise importance
of the individual input?”.

The intuition behind this is that for a particular image,
there might be regions that can be considered as background
or unimportant for the network to make its final prediction.
As these inputs propagate through the network, the regions of
less importance in the same feature map can tolerate lower
precision. Using metrics such as entropy, color gradient, and
points of interest, we argue that a region of an image can
be labeled important or unimportant, thus enabling lower
precision for unimportant pixels. We show that per-input
activation quantization can reduce computational energy up
to 33.5% or 42.0% while maintaining original Top-1 and Top-
5 accuracies respectively.

Keywords-Machine Learning; Neuromorphic Architectures;
Neural networks

I. INTRODUCTION

Neural networks have gained recent popularity for many

algorithms because of their flexibility to solve large classes

of problems. This has spawned an advent of hardware

accelerators specifically catered to these problems. While

different techniques address data movement, heterogeneous

requirements and more, most of these accelerators are still

built on digital multiplication units to perform basic opera-

tions. Two high level solutions have gained recent popularity

to address the fundamental computational requirements of

these networks: reduced bit precision and analog computa-

tion.

While earlier studies with neural networks used 32-bit

floating point numbers, 16-bit or even 8-bit fixed point

arithmetic is becoming the norm. Regardless of hardware,

the physical bit-width lowers the storage requirement. How-

ever, if underlying hardware supports variable precision, data

movement and computation can be optimized as well. Today,

mainstream support for 16-bit float point is widely available

[1], and fixed point is becoming increasing popular, but not

yet consumer available [2].

Futhermore, researchers are exploring reducing precision

even further, and allowing for non-traditional bit-widths.

Judd et al. demonstrate weights can be further quantized

per-layer, but do so with a brute-force approach [3]. Park

et al. propose a solution to reduce the brute force search

to a guided search, and separately quantize activations and

weights [4]. However, they limit their quantization search to

the full network, rather than per-layer optimization. Despite

this, they are able to maintain near full precision accuracy

with just 5-bit weights and 6-bit quantizations.

Orthogonally, architects are exploiting new technology to

fundamentally change arithmetic circuits. Moshovos et. al

propose new digital units which not only scale with bit-

width, but also avoid ineffectual neuron bits [5]. Kull et al.

showed that HP’s memristive technology is capable of be-

ing configured as a highly parallel multiply-and-accumulate

(MAC) circuit, providing orders of magnitude improvement

over traditional CMOS [6]. The crossbar network leverages

basic principles of circuits to perform multiplications and

additions in the analog domain, and an analog-to-digital

converter to bring results back into the digital domain.

Shafiee et. al. leverage this circuit in ISAAC [7], along with

16-bit fixed point computation.

II. PROPOSAL

We propose AQuA, an Active Quantization Approach

to extend reduced precision techniques to individual input

images. We analyze potential energy savings exploited on a

per-input basis, as well as a predictive framework for weight

quantization. We show that such efforts combined net up to

46% energy savings depending on input. Specifically, we

present:
• A technique for input and activation cropping

• An initial study on the accuracy and energy impacts of

proposed techniques

• A mapping to the ISAAC architecture to support vari-

ous precision levels and crops
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Figure 1: Motivational Example of Image Cropping

A. Motivational Example

We begin with a motivational example for intra-layer

quantization and cropping on a particular input image.

Intuitvely, we can see in Figure 1 the majority of the

image is background. Firstly, we show that by cropping

the entire edges of the image (making the pixel values 0),

our test neural network (Vgg16) is still able to classify

the image (Prediction B). In this particular case, the crop

actually improves the prediction confidence over the baseline

prediction A! However, due to the fact that the images

are normalized to mean pixel values in our baseline, the

0 values do not actually propagate through the network.

To simulate omitting these computations completely, we

perform an experiment in which we crop activations (note

that crop size reduces as the layer goes deeper). Even in

this instance (Prediction C), Vgg16 is still able to correctly

classify the example image.

To net the benefits of fewer computations, we must firstly

analyze the image and decide which computations can be

either omitted completely or computed at a lower precision.

We will describe the trade-offs between the two approaches

in detail during our discussion of activation quantization.

Secondly, we must provide an architecture which supports

variable precision computation. Finally, we must demon-

strate the energy savings associated with these techniques.

We first explain our input analysis technique, followed by a

brief description of the architecture.

B. Intra-layer Activation Quantization

As shown in the motivation example, many images have

irrelevant information encoded near their edges. However,

each image has some ideal crop which can come from any

combination of sides (top, left, bottom, right) and be for any

amount of pixels or activations. While a more aggressive

crop increases energy savings, it has the potential to cause

a misclassification that might have otherwise been correct.

Therefore we propose a lightweight image-preprocessing

step in which an input image is analyzed, and particular

cropping is predicted. The prediction algorithm can be tuned

to favor energy savings or accuracy. While we leave out

explicit discussion of such a predictor for this work-in-

progress, we note that object localization within an image is

well-studied. In particular, good inputs for a predictor might

consist of characteristics such as color gradient and points-

of-interest can be a good guide for object localization.

III. ARCHITECTURAL IMPLEMENTATION

Figure 2: Remapping of Weights for Lower Precision
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The main motivation behind AQuA is that, reducing the

precision of weights and activations reduces the energy

required to process a network. To quantify the impact of

AQuA on energy per classification, we choose to evaluate it

on the ISAAC [7] architecture. ISAAC is a memristor based

in-situ CNN accelerator flexible enough to handle changes

in activation and weight precision without the need for any

architectural changes. By default, ISAAC considers 16-bit

fixed point activations and weights

In ISAAC, an input (activations) is provided to a crossbar

over NA iterations (NA being activation precision). As

AQuA reduces intra- and inter-layer activation precision,

processing activations with lower precision means process-

ing for lesser number of iterations. This means, compared to

baseline ISAAC, the energy consumed by ADCs is reduced

by 2x when a layer has 8 bit activations. Similiarly, when

AQuA crops a portion of a feature-map it is equivalent to a

quantized precision of 0. Finally, because of how activations

are mapped to crossbars, it is possible to vary this precision

even within feature maps.

Weights in ISAAC are split into NW /2 chunks (NW

being weight quantization), and 2-bits of information is

programmed in a memristor cell. As showed in Figure 2,

only 5 columns are needed when a layer has 10-bit weights,

compared to 8 cells in baseline ISAAC. Programming quan-

tized weights requires lesser number of cells, hence reducing

the xbar+ADCs required in mapping the kernels. Hereby

we show that AQuA can reduce the ADC overhead, which

consumes 58% of the tile power in ISAAC [7]. In the results

section we describe the energy savings unlocked by AQuA

in detail.

IV. RESULTS AND ANALYSIS

In order to validate cropping activation layers, we analyze

the accuracy and energy impacts of activation cropping. We

analyze a naive approach which applies the same type of

crop to all images, as well as an ideal approach which applies

the most aggressive crop to each image while maintaining

the original accuracy. We conservatively assume that any im-

age the network originally misclassified cannot be cropped.

A. Search Space

We consider cropping from each edge of the image: top,

left, bottom, and right. While ultimately each cropping could

be of any size and quantization level, we leave that design

space exploration as future work. For the scope of this work

we consider 16 different activation crops with the cropped

area quantized to 0-bits. Different cropping techniques are

noted in Tables I and II. Note that when we refer to crops
or cuts, the actual 0-bit quantization occurs in the feature

maps of the network, not on the image itself.

We apply each of these different cropping techniques

to four different weight sets: full precision (32-bit floating

point), 16-bit fixed point, 16-bit varied, and 12-bit fixed

Table I: Naive Cropping results for ImageNet validation

with 16-bit fixed point weights. Cut bit vector refers to

T-Top, B-Bottom, L-Left, R-Right, where 1 indicates the

corresponding side has been cropped.

Cut Size Relative
Energy

Cut
[ T B L R ] Top-1 Top-5

0 1.0x [ 0 0 0 0 ] 65.09% 85.86%

1 0.861x

[ 0 0 0 1 ] 64.71% 85.77%
[ 0 0 1 0 ] 64.66% 85.66%
[ 0 1 0 0 ] 63.72% 84.97%
[ 1 0 0 0 ] 63.97% 85.24%

2 0.743x

[ 1 0 1 0 ] 63.17% 84.77%
[ 1 0 0 1 ] 63.22% 84.72%
[ 0 1 1 0 ] 62.46% 84.41%
[ 0 1 0 1 ] 62.69% 84.45%

[ 1 1 0 0 ]1 62.15% 84.05%
[ 0 0 1 1 ] 63.59% 84.95%

3 0.624x

[ 1 1 1 0 ] 60.70% 83.07%
[ 1 1 0 1 ] 60.83% 83.08%
[ 1 0 1 1 ] 61.44% 83.51%
[ 0 1 1 1 ] 61.05% 83.16%

4 0.526x [ 1 1 1 1 ] 58.57% 81.64%

Table II: Nx and Ny refers to the number of rows cropped in

x and y dimension of respective feature maps. For example,

top-right cut of Conv3 1 is 48x48x256, whereas for all-but-

left cut of Conv3 1 would be 48x40x256.

Layer Original Feature
Map Size

Crop Size
(Nx, Ny)

Conv1 1 224x224x64 25,25
Conv1 2 224x224x64 25,25
Conv2 1 112x112x128 10,10
Conv2 2 112x112x128 10,10
Conv3 1 56x56x256 8,8
Conv3 2 56x56x256 8,8
Conv3 3 56x56x256 8,8
Conv4 1 28x28x512 5,5
Conv4 2 28x28x512 5,5
Conv4 3 28x28x512 5,5
Conv5 1 14x14x512 2,2
Conv5 2 14x14x512 2,2
Conv5 3 14x14x512 2,2

point. The 16-bit varied weight set consists of variable

precision between layers, with 16 refering to the maximum

allowed precision per layer 2. Conceptually, our goal is to

demonstate that activation cropping can be applied in con-

junction with other weight quantization techniques, allowing

end users to stack the benefits of both techniques.

B. Methology

For this work we focus our efforts on VGGNet, specifi-

cally VGG16 (VGG16 has 13 convolutional layers, 3 fully

connected layers) [8] using TensorFlow [9]. While all net-

works have slight variations in the number of layers, filter

sizes, and more, the general structure for CNNs is similar.

To measure the effects of reduced precision computation, we

2Layer-wise Weight Bit Widths: 11-13-13-13-13-12-12-12-11-11-12-12-
12
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Figure 3: Energy vs Accuracy Trade-offs with 16-bit fixed point weights

measure the accuracy with the ILSVRC2012 validation set

which comprises of 50,000 images. Note that our analysis

uses full precision activations, and quantizing activations is

left to future work. Additionally, we do not retrain weight

sets, but rather generate our quantized weight sets by simply

rounding the full precision weights.

C. Analysis

As mentioned earlier, we claim that certain regions of the

activations can be considered unimportant, and hence can be

cropped out. Though the region of unimportance depends on

the input image, we start our analysis by testing the accuracy

for all kinds of crops. Table I shows the top-1 and top-5

accuracies corresponding to the naive approach of applying

same crops to all the 50K images. As shown in the table,

we further classify the 16-crops into 4 classes: 1-cut, 2-cut,

3-cut, and 4-cut, with 0-cut being the original uncropped

image and activation. As expected, with an increase in the

crop size, the energy savings comes at a cost of reduced

accuracy. As can be seen in the table, different types of

crops tend to have different impact on the top-1 and top-5

accuracy.

Figure 4: Max Cropping allowed on validation set images to

retain original accuracy with a given weight set. Size refers

to number of edges cropped.

Next, we perform an experiment to quantify the number

of cuts each image can tolerate without incurring a drop in

accuracy. As shown in Figure 4 We find that over 50% of

the images tested are robust to even 4-cuts for both top-1

and top-5 accuracy. While the original image is required for

approximately 20% of the inputs to maintain an accurate top-

1 prediction, only around 10% of the inputs need it to make

an accurate top-5 prediction (exact numbers vary depending

on the weight set used). This clearly proves the need for

an intelligent predictor to choose the appropriate crop to

maximize the accuracy-energy trade-off for an image.

Figure 5: Energy comparison of different weight-sets for

maintaining top-1 and top-5 accuracy, both with and without

AQuA (activation cropping). Energy is shown relative to 16b

Fixed, the baseline comprising of a 16-bit fixed point weight

set and uncropped activations.

Figure 3 plots the accuracy versus energy for all possible

cuts, and an oracle version AQuA. It can be clearly seen that

each crop saves signficant energy compared to the baseline,

at the cost of accuracy. However, AQuA bridges this gap

by performing the crop adaptively based on input image

such that original classification accuracy is retained while
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providing an energy savings of up to 33.5% and 42.0% for

top-1 predictions and top-5 predictions, respectively. Finally,

we show that AQuA can also be applied in conjunction

with other quantization techniques in Figure 5. Activation

cropping energy savings are nearly identical, even with

differently quantized weight sets.

V. CONCLUSION AND FUTURE WORK

In this work we show that adaptive activation quantization

techniques can signficantly reduce the number of computa-

tions. Our proposed energy saving techniques can be applied

in conjunction with existing quantization approaches. We

show that such an approach has the potential for energy

improvements of up to 41.8% with simple reconfiguration

of a CNN accelerator, ISAAC. Moving forward, we expect to

do a deeper dive on variable levels of precision within activa-

tions, rather than just quantization to 0-bits of precision for

unimportant regions. We also seek to build a predictor and

analyze the accuracy-energy trade-offs between aggressive

and conservative policies.
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