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Improving CNN Efficiency

© Stripes: Bit-Serial Deep Neural Network Computing
® Per-layer bit precisions net significant savings with <1% accuracy loss
° Brute force approach to find best quantization — retraining at each step!
® Good end result, but expensive!

* Weight-Entropy-Based Quantization for Deep Neural Networks
® Quantize both weights and activations
® Guided search to find optimal quantization (entropy and clustering)
© Still requires retraining, still a passive approach

Can we exploit adaptive reduced precision during inference?




Proposal:

Adaptive Quantization Approach (AQuA)

®* Most images contain regions of irrelevant
information for the classification task

® Can avoid such computations all together?

® Quantize completely regions to 0 bits
®* More simply — Crop them!




Proposal: Activation Cropping
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Proposal: Activation Cropping
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Search Space — How to Crop

* Exploit domain knowledge
* Information is typically centered
within the image (>55% in our tests)
 Utilize a regular pattern

* Less control logic required
* Maps easier to different hardware

 Added bonus:

* While objects are centered, majority
of area (and thus computation) is on
the outside!




Proposal: Activation Cropping

Concept:
Scale Feature Maps

Proportionally
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Search Space — Crop Directions

[1000] [0100] * We consider 16 possible crops as
permutations of top, bottom, left, and
right crops encoded as a vector:

|mage |mage [ TOP, BOTTOM, LEFT, RIGHT]

* Unlike traditional pruning, AQUA can
exploit image-based information to

[0010] [0001] enhance pruning options.

[1011] [0101]




Quantifying Potentials

® For maintaining original
Top-1 accuracy, 75%
images can tolerate
some type of crop!
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® Greater savings with
top-5 predictions

® Technique invariant to
weight quantization
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Exploiting Energy Savings with ISAAC

* Activation cropping technique can
be applied to any architecture

®* We use the ISAAC accelerator due
to its flexibility

® Future work includes leveraging
additional variable precision
techniques
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Weight Precision Savings
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“FlexPoint” Support
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Can vary shift amount to compute fixed point computations with different exponents




Activation Quantization Savings
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Activation Quantization Savings

Buffered Input
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increasing throughput,
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and lowering energy.
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Top-1 Accuracy

Naive Approach — Crop Everything
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 Substantial energy savings at a cost to accuracy

* Theoretically, can save over 33% energy and maintain original accuracy!
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Overall Energy Savings

* Adaptive quantization saves 33%  120-00% _ _
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Future Work

® Predict unimportant regions
° Using a “O™” layer with a just a
few gradient-based kernels

Original

® Use variable low precision
computations unimportant
regions (not just cropping)

® Quantify energy and latency
changes due to additional
prediction step, but fewer
overall computations




Conclusion
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Thank youl!

Questions?



