

A Case for Dynamic Activation Quantization in CNNs

Karl Taht, Surya Narayanan, Rajeev Balasubramonian University of Utah

Overview

- Background
- Proposal
- Search Space
- Architecture
- Results
- Future Work

Improving CNN Efficiency

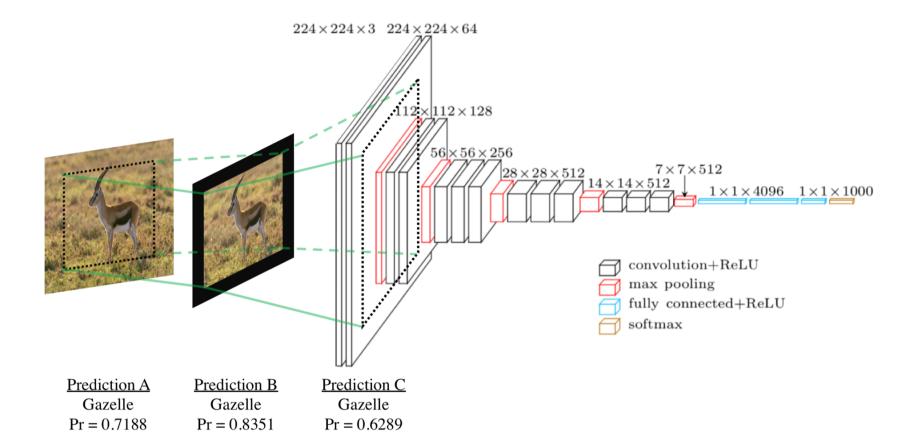
- Stripes: Bit-Serial Deep Neural Network Computing
 - *Per-layer bit precisions* net significant savings with <1% accuracy loss
 - Brute force approach to find best quantization retraining at each step!
 - Good end result, but expensive!
- Weight-Entropy-Based Quantization for Deep Neural Networks
 - Quantize both weights and activations
 - *Guided search* to find optimal quantization (entropy and clustering)
 - Still requires retraining, still a passive approach

Can we exploit adaptive reduced precision during inference?

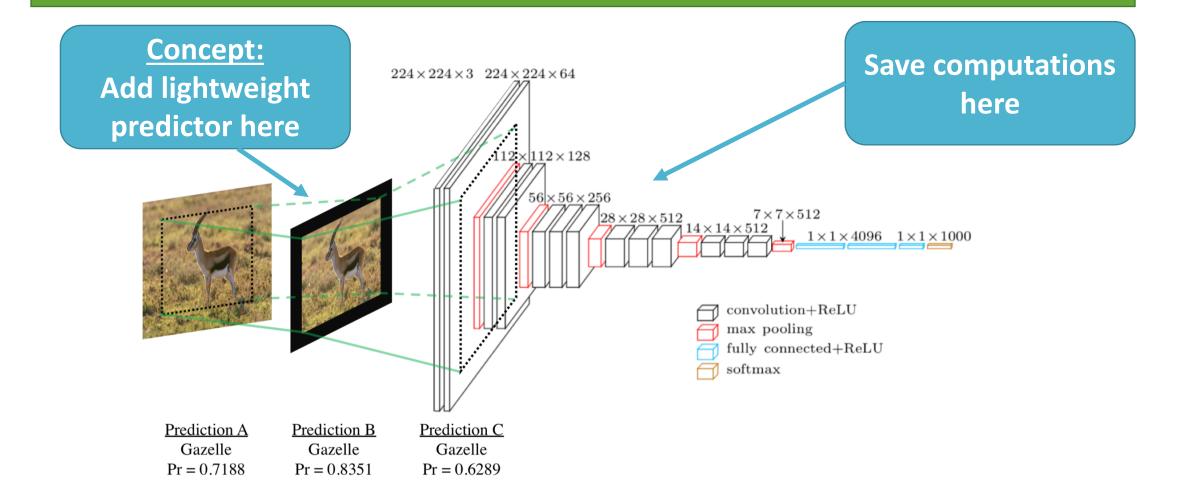
Proposal: Adaptive Quantization Approach (AQuA)

- Most images contain regions of *irrelevant information* for the classification task
- Can avoid such computations all together?
- Quantize completely regions to 0 bits
 - More simply *Crop them!*

Proposal: Activation Cropping

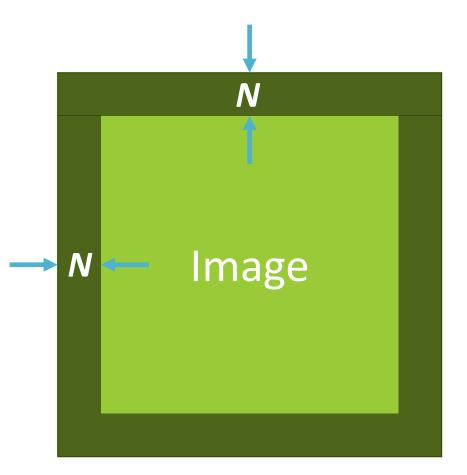


Proposal: Activation Cropping

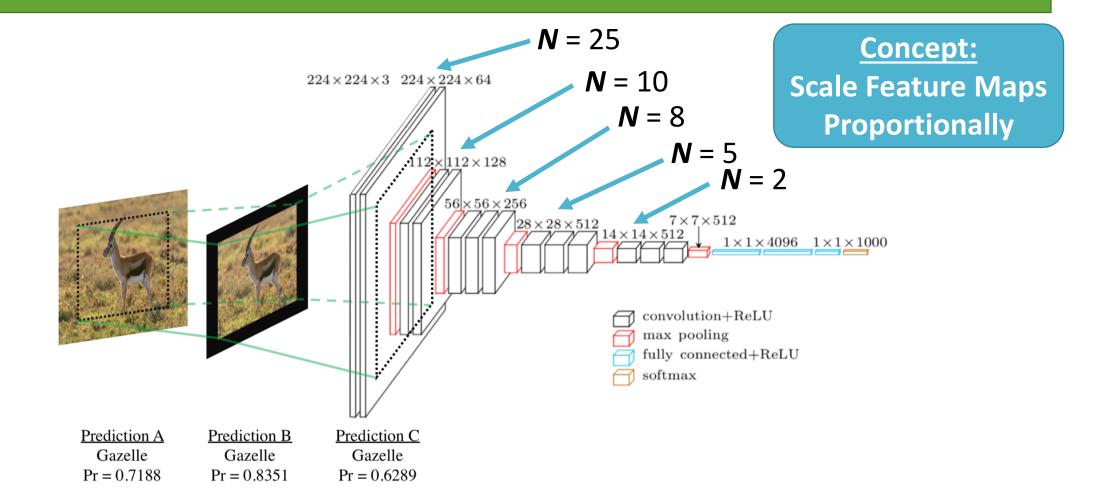


Search Space – How to Crop

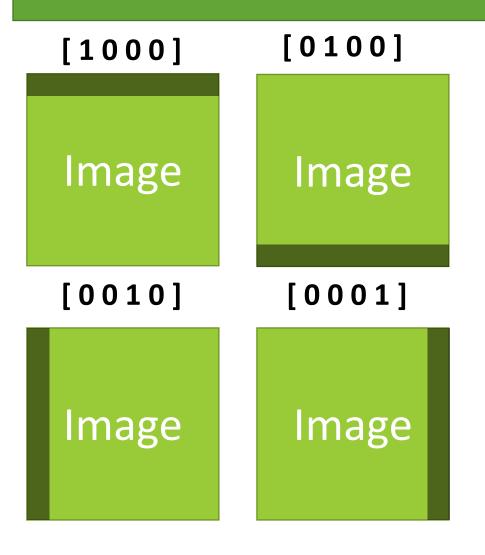
- Exploit domain knowledge
 - Information is typically centered within the image (>55% in our tests)
- Utilize a regular pattern
 - Less control logic required
 - Maps easier to different hardware
- Added bonus:
 - While objects are centered, majority of area (and thus computation) is on the outside!



Proposal: Activation Cropping



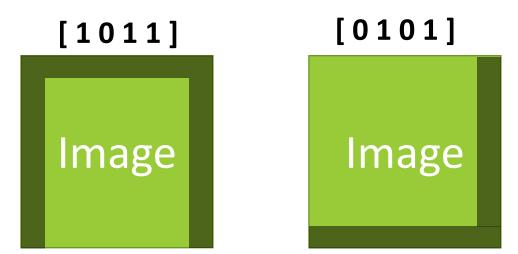
Search Space – Crop Directions



 We consider 16 possible crops as permutations of top, bottom, left, and right crops encoded as a vector:

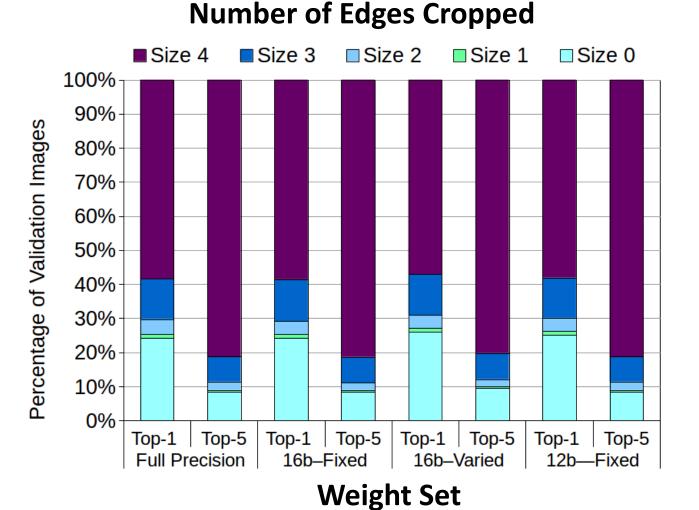
[TOP, BOTTOM, LEFT, RIGHT]

 Unlike traditional pruning, AQuA can exploit *image-based information* to enhance pruning options.



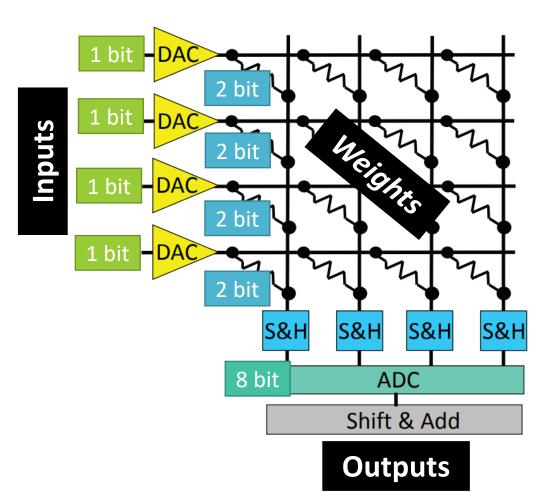
Quantifying Potentials

- For maintaining original Top-1 accuracy, 75% images can tolerate some type of crop!
- Greater savings with top-5 predictions
- Technique *invariant* to weight quantization

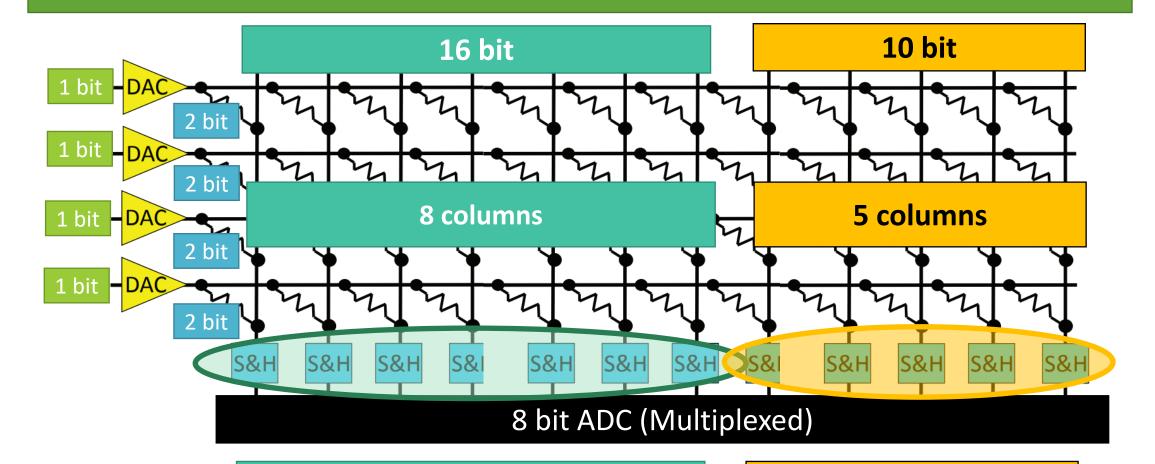


Exploiting Energy Savings with ISAAC

- Activation cropping technique can be applied to any architecture
- We use the ISAAC accelerator due to its flexibility
- Future work includes leveraging additional variable precision techniques



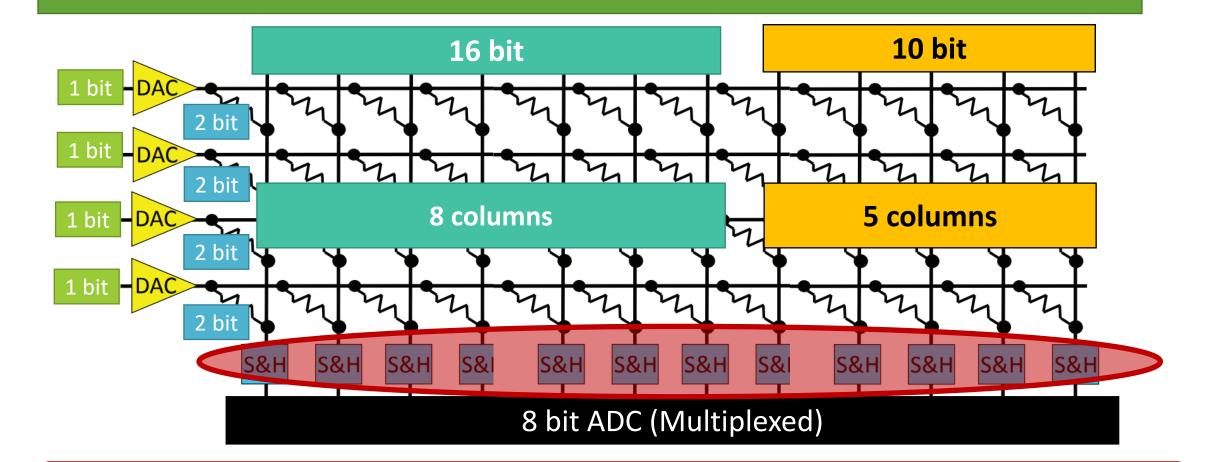
Weight Precision Savings



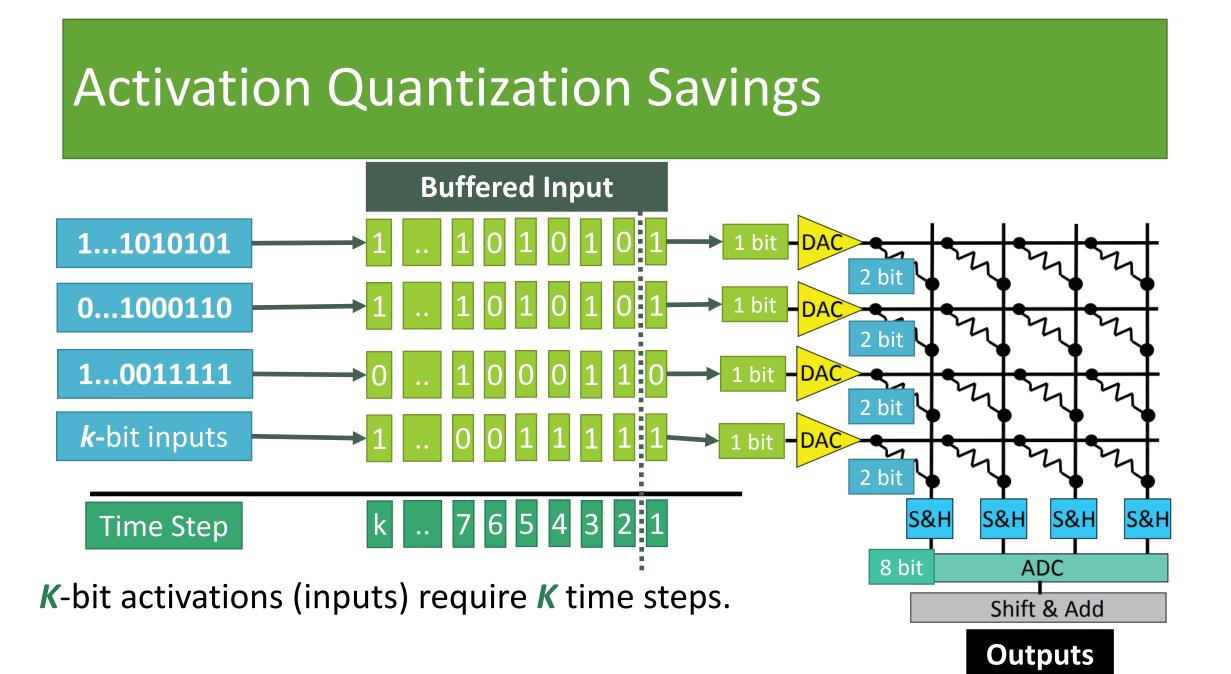
8 x ADC Operations

5 x ADC Operations

"FlexPoint" Support

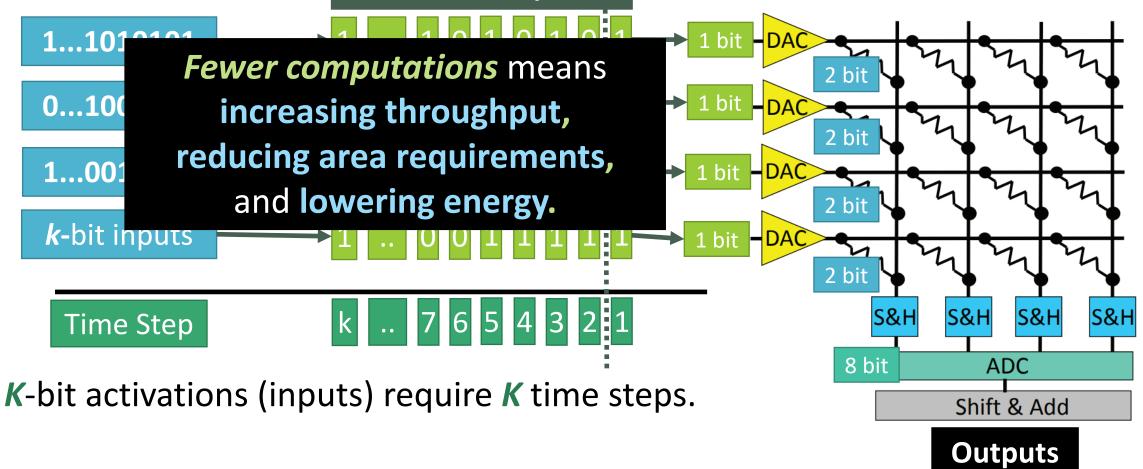


Can vary shift amount to compute fixed point computations with different exponents

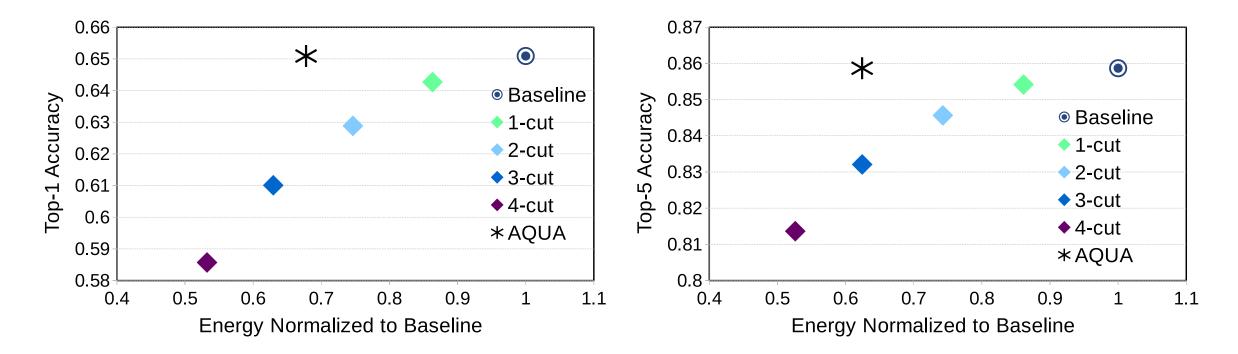


Activation Quantization Savings

Buffered Input



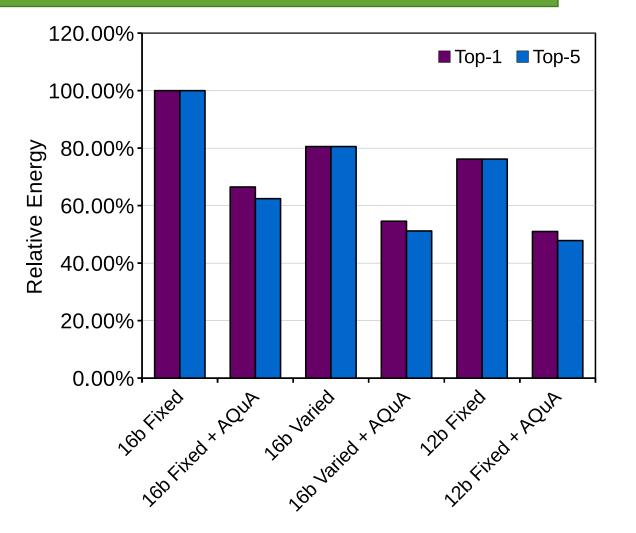
Naive Approach – Crop Everything



- Substantial energy savings at a cost to accuracy
- Theoretically, can save over 33% energy and maintain original accuracy!

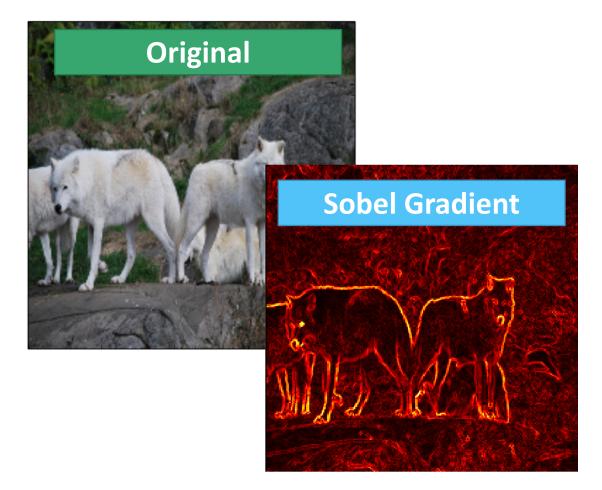
Overall Energy Savings

- Adaptive quantization saves 33% on average compared to an uncropped baseline.
- Technique can be applied in conjunction with weight quantization techniques with nearly identical relative savings



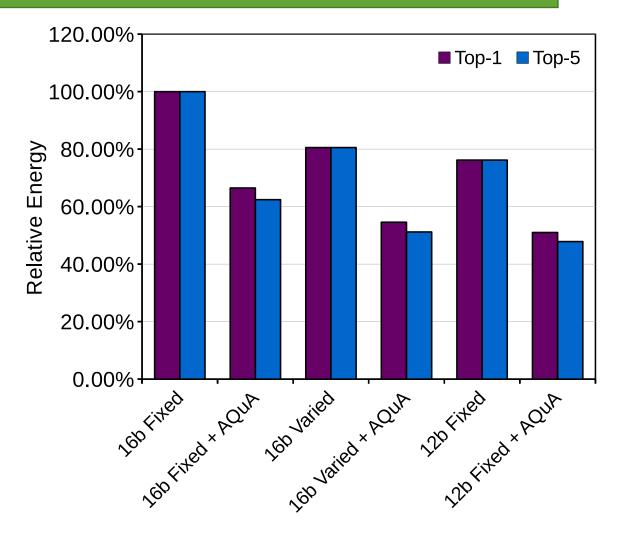
Future Work

- **Predict** unimportant regions
 - Using a "0th" layer with a just a few gradient-based kernels
- Use variable low precision computations unimportant regions (not just cropping)
- Quantify energy and latency changes due to additional prediction step, but fewer overall computations



Conclusion

- Adaptive quantization saves 33% on average compared to an uncropped baseline.
- Technique can be applied in conjunction with weight quantization techniques with nearly identical relative savings



Questions?