
A High Efficiency Accelerator for Deep Neural
Networks

Aliasger Zaidy
FWDNXT Inc.

azaidy@fwdnxt.com

Andre Xian Ming Chang
FWDNXT Inc.

achang@fwdnxt.com

Vinayak Gokhale∗

Google Inc.

drvgokhale@gmail.com

Eugenio Culurciello
FWDNXT Inc.

euge@fwdnxt.com

Abstract

Deep Neural Networks (DNNs) are the current state of the art

for various tasks such as object detection, natural language

processing and semantic segmentation. These networks are

massively parallel, hierarchical models with each level of hi-

erarchy performing millions of operations on a single input.

The enormous amount of parallel computation makes these

DNNs suitable for custom acceleration. Custom accelera-

tors can provide real time inference of DNNs at low power

thus enabling widespread embedded deployment. In this

paper, we present Snowflake, a high efficiency, low power

accelerator for DNNs. Snowflake was designed to achieve

optimum occupancy at low bandwidths and it is agnostic

to the network architecture. Snowflake was implemented

on the Xilinx Zynq XC7Z045 APSoC and achieves a peak

performance of 128G-ops/s. Snowflake is able to maintain a

throughput of 98 FPS on AlexNet while averaging 1.2 GB/s

of memory bandwidth.

CCS Concepts • Computer systems organization →

Single instruction,multiple data; •Hardware→Emerg-

ing architectures; Hardware accelerators;

Keywords DeepNeural Network Accelerator, Parallel Com-

puting

1 Introduction

Deep Learning algorithms are being increasingly used for

several tasks such as object localization [1–4], scene under-

standing [5, 6] and language translation [7]. Convolutional

Neural Networks (CNN) are a type of deep learning algo-

rithm that use a cascade of convolutional, hierarchical feature

extractors to process an input signal and produce a result.

These models perform billions of operations to produce a

single output and consume a lot of power in the process. For

a CNN, images are the most commonly used input. Recently,

certain CNNs have claimed better classification accuracy

than humans on specific tasks [8].

∗Work done while at Purdue University, West Lafayette, Indiana

EMC2, Mar 2018, Williamsburg, VA, USA

CNNs are massively parallel workloads that make them an

excellent target for custom accelerators [9–12]. These accel-

erators enable energy efficient processing of CNNs compared

to general purpose solutions. However, recent CNN acceler-

ators fail to achieve high occupancy due to the variability

in data access patterns across different CNN layers. Most

accelerators manage to achieve high occupancy for a partic-

ular set of CNN layers but are unable to keep the compute

elements occupied across all types of CNNs. In the following

text, the terms computational efficiency or efficiency might

be used interchangeably with occupancy.

This paper expands Snowflake[13], a high efficiency, low

power accelerator for CNNs. Snowflake is extended to en-

sure scalability and improve utilization of memory band-

width. Additional profiling was also performed on Snowflake.

Snowflake is agnostic to the network architecture and was

designed to achieve high occupancy of compute at all times.

A secondary design objective of Snowflake was to achieve

low memory bandwidth, thus, reducing power consumption.

Several compression techniques [14–17] have been proposed

for bandwidth bound CNN layers and can be used in con-

junction with Snowflake to accelerate these layers. Our goal

in designing Snowflake has been to efficiently map computa-

tions to the available resources. Hence, high computational

efficiency is our primary design goal. Snowflake can achieve

a computational efficiency of 91%-95% on various represen-

tative CNN workloads.

2 CNN Overview

CNNs are state of the art Deep Learning models with appli-

cations in domains like image search, autonomous driving,

face identification, etc. These models are comprised of a cas-

cade of hierarchical feature extractors called layers. The most

common layer is one consisting of a series of convolution

operations. Such a convolutional layer has two inputs: a 3

dimensional input maps volume and a 4 dimensional kernel

volume. The convolutional layer also produces a 3 dimen-

sional output maps volume. The input maps volume is the

output of the previous layer or an image in case of the first

layer of the network. Some convolutional layers also have a

single bias value associated with each 3 dimensional part of

9

2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications

978-1-5386-7367-6/18/$31.00 ©2018 IEEE
DOI 10.1109/EMC2.2018.00010

EMC2, Mar 2018, Williamsburg, VA, USA Zaidy et al.

Figure 1. A trace is a contiguous region of memory nec-

essary to produce an output. One or more traces may be

required to produce a single output. Traces are subdivided

into 256-bit vectors. Data is read from on-chip buffers at

vector granularity.

the kernel volume. Some convolutional layers are also fol-

lowed by a downsampling operator like spatial maxpooling

or average pooling. Downsampling reduces the computa-

tional complexity of the network. [18] provides a detailed

visualization of the operations involved in a CNN.

3 Microarchitecture

Snowflake was designed to achieve high occupancy of avail-

able compute resources. Multiply Accumulates account for

most of the compute inDNNs. Keeping this inmind, Snowflake

tries to achieve high occupancy of Multiply Accumulate

(MAC) units. An important element for achieving high com-

putational efficiency is data organization which is discussed

in Section 3.1.

Snowflake is composed of three parts: (a) Control Core,

(b) Compute Core, (c) Data Distribution Network. The Con-

trol Core is responsible for directing the vector operations

performed by the Compute Core. It also enables data move-

ment, synchronization and other bookkeeping operations.

The Compute Core operates on the input data to enable low

latency, high throughput processing of DNNs. The data dis-

tribution network is responsible for communicating data

across the Compute Cores, fetching inputs from memory

and writing results back to memory.

3.1 Data Organization

Data organization is a key factor enabling Snowflake to

achieve the high occupancy necessary for efficient process-

ing. Data is organized in Snowflake at the granularity of

traces. A trace, shown in Figure 1, refers to a contiguous

region of memory that is necessary to produce a single out-

put. Computation and data movement in Snowflake occurs

on traces. Depending on the size of the kernel, Snowflake

requires one or more traces to produce a single output. As

shown in the Figure 1, length of a trace iskernelwidth(kW)×
depth. For a kernel of size 3×3×384, trace length is 3×384 =
1152 and 3 such traces are required to produce a single output.

The Control Core is able to perform bookkeeping operation,

such as address manipulation, while the compute resources

are busy operating on a trace.

Traces are further sub divided into vectors. A vector is

the granularity at which data is read from/written to on-

chip buffers. Compute resources operate on a vector per

cycle. Hence, a trace keeps compute resources occupied for

several cycles. The size of a vector depends on the number

of compute resources working on a trace in parallel i.e. the

number of multiply accumulate units (MACs) present in a

vector multiply accumulate unit (vMAC).

For the purpose of this publication, 16 MACs are used per

vMAC and hence, a 256-bit vector size was used. Snowflake

uses 16-bit fixed point format resulting in 16words per vector.

Loss of accuracy at 16-bit fixed point is negligible compared

to 32-bit floating point for DNN Inference [19]. Snowflake

performs computations on traces in two different modes:

(a) Cooperative Mode, and (b) Independent Mode, which are

explained further in Section 3.3. The use of traces does not

require input data to be reorganized. Images can be directly

fetched in RGB format. The intermediate results produced

while processing the network are stored in the appropriate

format by Snowflake.

3.2 Control Core

The control core is responsible for orchestrating the compute,

data movement, synchronization and other auxiliary opera-

tions. Snowflake’s control core is a 5 stage RISC like pipeline.

The pipeline has a 4 kB instruction cache and provides 32x

32-bit scalar registers for metadata/address manipulation.

Instruction Set

Snowflake uses 32-bit wide instructions. Snowflake’s ISA

consists of two types of instructions: scalar instructions and

vector instructions. Scalar instructions are used to keep track

of addresses, for implementing branching primitives, and

synchronization. Vector instructions include data movement

instruction and compute instructions.

Snowflake’s instruction comprises of the following fields:

1. 4-bit opcode - to identify the type of operation being

performed

2. 1-bit mode - to distinguish between two instructions

with the same opcode but slightly different operation

(e.g. the move instruction and the move immediate

instruction)

3. an optional 5-bit destination register address - to store

the result of the operation

4. one or more 5-bit source register addresses - to hold the

operands or a pointer to the operands

5. an immediate field - of varying length depending on

the presence of other fields

The scalar instructions include datamove instructions, add

instructions, multiply instructions and branch instructions.

Move Immediate MOVI and Move MOV are the data move

instructions. The former is used to write a 22-bit immediate

value into a scalar register while the latter is used to move

10

A High Efficiency Accelerator for Deep Neural Networks EMC2, Mar 2018, Williamsburg, VA, USA

Figure 2. An overview of Snowflake. The three main components of Snowflake are: a) Control Core, b) Compute Core and

c) Data Distribution Network. The Control Core is a 5 stage pipeline. The Compute Core consist of 4 Compute Units which

contain 4 vector multiply accumulate units each. Each Compute Unit has a maps buffer shared between the vMACs. Each

vMAC has its own weights buffer.

data from one scalar register to another. MOV allows data

from the source register to be shifted before it is written into

the destination register.

Similar to the move instruction, there are two types of add

and multiply instructions:ADDI /MULI and ADD/MUL. The

former adds/multiplies a scalar register with an immediate

value, while the ADD/MUL instruction adds/multiplies two

scalar registers.

Loops and binary conditional execution are commonplace

in DNN code. Snowflake supports such control flow state-

ments via conditional branch instructions. Snowflake pro-

vides three branch instructions: (a) Branch Less than Equal to

(BLE), (b) Branch Greater than Equal to (BGE), and (c) Branch

Equal to (BEQ). The branch instruction compares the con-

tents of two source registers and takes action based on the

successful evaluation of the expected condition. The target

address can be +/- 1024 instructions from the branch instruc-

tion.

The vector instructions are Multiply Accumulate (MACC),

Maxpool (MAX), Vector Register Move (VMOV), Load (LD),

Store (ST) and Trace Move (TMOV). All vector instructions

are trace based and contain a 12-bit immediate value to pro-

vide the trace length. The MACC instruction performs the

convolution/matrix-multiply operations. The source regis-

ters for the MACC instruction contain the start address of

the operand traces in the on chip buffers. Non linearities

like ReLU, sigmoid, tanh, etc. are performed as a part of the

MACC instruction. The MAX instruction performs a vec-

tor compare/maxpool operation. The Vector Register Move

operation is used to preload data into the accumulator of

the compute. This is important for loading bias values and

for the bypass branch in case of ResNet [4]. The LD and ST

instructions are used to communicate data/results from/to

memory. The trace move instruction is used to move data

across on chip buffers of different compute units.

3.3 Compute Core

For DNNs, Multiple Accumulates form the majority of oper-

ations. Hence, the basic compute element used in Snowflake

is a multiply accumulate (MAC) unit. A MAC unit consists

of a pipelined multiplier and adder. The multiplier processes

two 16-bit input operands and produces a 32-bit result which

is then accumulated by the adder. Pipelining ensures that

the MAC unit can be clocked at a high frequency. Snowflake

groups 16 such MAC units into a vector multiply accumu-

late unit (vMAC). Each vMAC has a 16 kB on chip buffer

to store the weights operand. Four vMACs are combined to

11

EMC2, Mar 2018, Williamsburg, VA, USA Zaidy et al.

Figure 3. A single cluster Snowflake system was implemented on the Xilinx ZC706. The design contained 256 MAC units at

250MHz. Snowflake achieves a computational efficiency of 91%-95% on various CNN benchmarks.

form a compute unit (CU) and four such CUs together con-

stitute the compute core. The compute core is the workhorse

of Snowflake. Each compute unit contains a 64 kB on chip

buffer to store the maps operand. This maps buffer is shared

by all vMACs within a CU. A CU also contains a vector com-

pare unit (vMAX) to perform the maxpool. The vMAX unit

fetches its operand from the maps buffer too. The results

of MACC and MAX operations are stored back to the maps

buffer.

Along with the compute, the CU also houses trace de-

coders to enable subdivision of traces into vectors. Trace

decoders generate vector addresses that are fed to the on

chip buffers which then deliver the data to the vMACs and

vMAX. For a convolution, data is shared within and between

the vMACs in two different ways. The data sharing patterns

constitute the Independent and Cooperative Modes which are

explained below:

Cooperative mode

In the cooperative (COOP) mode, the MACs within a vMAC

work together on the same trace to produce a single out-

put result. Each vMAC has a different kernel stored in its

associated weights buffers. The maps vector is broadcast to

all the vMACs within the CU. At the end of the computa-

tion, the COOP mode produces 16 partial results which are

then reduced by a separate pipelined adder, called the gather

adder, to produce the final output pixel. The COOP mode

provides lower latency than the Independent mode and is

suitable when the trace length is a multiple of number of

MACs in a vMAC (16). A CU, in the COOP mode, produces 4

results at a time.

Independent mode

For some layers of a DNN, multiple of 16 trace lengths are

not possible e.g. first layer of most CNNs. In such a case, In-

dependent (INDEP) Mode is used. As the name suggests, the

MACs within a vMAC work on independent computations

when used in INDEP mode. In this mode, the kernel buffer

associated with a vMAC stores 16 different kernels (one for

each MAC). The vector read from the maps buffer is broad-

cast to all the MACs in a pixel by pixel fashion. The values

within the vector that are not useful for the computation are

discarded. A CU, in the INDEP mode, produces 64 results in

parallel.

In order to achieve an efficient, high speed implementation

on FPGAs, the broadcast pixel is selected using a shift register.

This results in some wasted cycles, for discarding data within

the vector that is unnecessary for a particular computation

and causes a minor loss in efficiency. It is notable that despite

this loss, Snowflake maintains an average computational

efficiency of 91%-95%.

3.4 Data Distribution Network

The data distribution network connects the CUs, the Control

Core and Memory Interface. It is responsible for loading the

operand into the appropriate on chip buffers and storing

the results back to memory. It redirects the results of the

computation back to the appropriate maps buffer. It also

enables the TMOV instruction, which allows CUs within a

compute core to communicate with each other. The memory

interface is AXI4 [20] compliant.

The Control Core, Compute Core and Data Distribution

Network together form a Compute Cluster. Figure 2 shows

a Compute Cluster and its internals. Snowflake scales at

the level of Compute Clusters. Synchronization primitives

12

A High Efficiency Accelerator for Deep Neural Networks EMC2, Mar 2018, Williamsburg, VA, USA

are provided for inter cluster coordination. Data movement

across clusters currently occurs via main memory.

4 Results

A single cluster Snowflake system was implemented on the

Xilinx ZC706. The design was run at 250MHz and contained

256 MAC units. Total on chip memory was 512 kB with

256 kB each of maps and weights buffers. Snowflake was

benchmarked on AlexNet [1], GoogLeNet [2], and ResNet-50

[4]. End to end execution of these benchmarks on Snowflake

resulted in average occupancies between 91%-95%. Average

bandwidth consumed was about 1.2 GB/s for AlexNet and

3GB/s for GoogLeNet and ResNet-50. The peak memory

bandwidth consumed was 3.3 GB/s for 1 × 1 convolution

layers. For a more detailed view, Figure 3 shows the compu-

tational efficiency achieved for these three networks on a

per layer basis. The first layer of all networks suffers from an

inefficiency due to the implementation of INDEP mode ex-

plained in Section 3.3. Snowflake is able to achieve 88%-97%

efficiency on the various benchmarked layers. A through-

put of 98 FPS, 36 FPS and 18 FPS is achieved on AlexNet,

GoogLeNet, and ResNet-50 respectively.

5 Conclusion

An efficient, model agnostic CNN accelerator architecture

called Snowflake was presented. A 256 MAC Snowflake sys-

temwas prototyped on aXilinx ZC706 at 250MHz. Snowflake

was able to achieve average computational efficiencies of 91%-

95% on various CNN workloads. The prototyped system was

able to deliver real time performance on AlexNet, GoogLeNet

and ResNet. Future work involves scaling Snowflake up to a

multi cluster system on larger FPGAs. Batch processing will

enable Snowflake to maintain the computational efficien-

cies at current levels. A multi cluster system can be used for

server-based workloads where latency is not as important

as throughput.

References
[1] A. Krizhevsky, “One weird trick for parallelizing convolutional neural

networks,” CoRR, vol. abs/1404.5997, 2014.

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”

in The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2015.

[3] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-

thinking the inception architecture for computer vision,” CoRR,

vol. abs/1512.00567, 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” CoRR, vol. abs/1512.03385, 2015.

[5] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks

for semantic segmentation,” in The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2015.

[6] Z. Wu, C. Shen, and A. van den Hengel, “Wider or deeper: Revisiting

the resnet model for visual recognition,” CoRR, vol. abs/1611.10080,

2016.

[7] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep convolu-

tional networks for text classification,” arXiv preprint arXiv:1606.01781,

2016.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-

passing human-level performance on imagenet classification,” CoRR,

vol. abs/1502.01852, 2015.

[9] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240

g-ops/s mobile coprocessor for deep neural networks,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, pp. 682–687, 2014.

[10] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Di-

annao: A small-footprint high-throughput accelerator for ubiquitous

machine-learning,” ACM Sigplan Notices, vol. 49, no. 4, pp. 269–284,

2014.

[11] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-

efficient reconfigurable accelerator for deep convolutional neural net-

works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138,

2017.

[12] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and L. Benini,

“Origami: A convolutional network accelerator,” in Proceedings of the

25th Edition on Great Lakes Symposium on VLSI, GLSVLSI ’15, (New

York, NY, USA), pp. 199–204, ACM, 2015.

[13] V. Gokhale, A. Zaidy, A. X. M. Chang, and E. Culurciello, “Snowflake:

An efficient hardware accelerator for convolutional neural networks,”

in Circuits and Systems (ISCAS), 2017 IEEE International Symposium on,

pp. 1–4, IEEE, 2017.

[14] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman

coding,” International Conference on Learning Representations (ICLR),

2016.

[15] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and

K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer pa-

rameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.

[16] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and

connections for efficient neural network,” in Advances in Neural Infor-

mation Processing Systems (NIPS), pp. 1135–1143, 2015.

[17] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram,M. A. Horowitz, andW. J. Dally,

“Eie: Efficient inference engine on compressed deep neural network,”

International Conference on Computer Architecture (ISCA), 2016.

[18] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep

learning,” arXiv preprint arXiv:1603.07285, 2016.

[19] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep

learning with limited numerical precision.,” in ICML, pp. 1737–1746,

2015.

[20] A. A. AXI and A. P. Specification-AXI, “Axi4, and axi4-lite, ace and

ace-lite,” tech. rep., Technical report, 2011.

13

