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AI / ML 
use cases 

Looking back to 1993: my first cross-disciplinary R&D project with industry 

1 

-1 
θ - threshold  

X 
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Semiconductor neuron 
(analog computation) 

Designing brain-inspired computer 

10x smaller 10x more accurate 
100x faster / more energy efficient 

then traditional platforms 
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AI / ML 
use cases 

Designing brain-inspired computer 

10x smaller 10x more accurate 
100x faster / more energy efficient 

then traditional platforms 

Emulation of training/prediction 
on personal computers  

or supercomputers (Cray T3D) 

Borland / Cray C compilers 

Binary with assembler inlines 

PSpice 
simulator 

Run-time environment 

Intel/AMD/Alpha 
hardware 

Images 

Hopfiled Neural Network 

... failed  because modeling  
using available HW/SW was  

• too complex 
• too slow 

• too unreliable and costly 
and we didn’t have GPGPUs and 

highly optimized math/NN libraries 

Must have been solved by now 
with new technology? 

Are we there yet? 

Looking back to 1993: my first cross-disciplinary R&D project with industry 



    4/27 

Practical and successful AI system 
must be co-designed 

AI / ML 
use cases 

Data sets 

Hardware Algorithms 

Libraries 

Models 

for various form factors 
(IoT, mobile, data centers) 

 

 

 

 

while trading off multiple constraints 
(accuracy, speed, energy, size, costs) 

and maximizing ROI 
(faster time to market, R&D sustainability, 

much better than all competitors) 

 

25 years later: AI and ML revolutionizes multiple industries 

2018: many cross-

disciplinary R&D groups 
(ML/AI/systems) 

AI hardware 
• All major vendors 
(Google, NVIDIA, IBM, 
Intel, ARM, Qualcomm, 
Apple, AMD …) 

AI models 
Numerous groups in 
academia & industry 
(DeepMind, IBM, OpenAI, 
Microsoft, Facebook …) 

AI software 
• AI frameworks 
(TensorFlow, MXNet, 
Caffe2, CNTK, Theano) 
• AI libraries 
(cuDNN, libDNN, ArmCL, 
OpenBLAS)  

AI integration/services 
• Cloud services (AWS, 
Google, Watson, Azure ...) 

 
Are we there yet? 
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AI / ML 
use cases 

Numerous publications and reports 

Machine learning and artificial intelligence became very hot topics 

2018: many cross-

disciplinary R&D groups 
(ML/AI/systems) 

AI hardware 
• All major vendors 
(Google, NVIDIA, IBM, 
Intel, ARM, Qualcomm, 
Apple, AMD …) 

AI models 
Numerous groups in 
academia & industry 
(DeepMind, IBM, OpenAI, 
Microsoft, Facebook …) 

AI software 
• AI frameworks 
(TensorFlow, MXNet, 
Caffe2, CNTK, Theano) 
• AI libraries 
(cuDNN, libDNN, ArmCL, 
OpenBLAS)  

AI integration/services 
• Cloud services (AWS, 
Google, Watson, Azure ...) 

Numerous models, data sets, 
benchmarks, libraries and tools 

Multiple competitions  
focusing mostly on accuracy (Kaggle) 

A few competitions focusing  
on optimizing other metrics  

besides accuracy:  

LPIRC – Low-Power  
Image Recognition Challenge  
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AI / ML 
use cases 

Industrial adoption of AI/ML is still very slow 

• Technological chaos: continuously 
changing algorithm/model/SW/HW stack 

Often result in over-provisioned,  
under-performing, inaccurate 

and expensive technology 

Will die 
Must be redesigned 

• Outdated/non-representative training sets 

• No established methodologies and 
automation to benchmark and co-design 
efficient SW/HW/model stack 

• Very little artifact sharing & reuse 
(optimizations, features, mispredictions, etc) 

• Growing gap between academic and 
industrial research (toy examples) 

2018: many cross-

disciplinary R&D groups 
(ML/AI/systems) 

AI hardware 
• All major vendors 
(Google, NVIDIA, IBM, 
Intel, ARM, Qualcomm, 
Apple, AMD …) 

AI models 
Numerous groups in 
academia & industry 
(DeepMind, IBM, OpenAI, 
Microsoft, Facebook …) 

AI software 
• AI frameworks 
(TensorFlow, MXNet, 
Caffe2, CNTK, Theano) 
• AI libraries 
(cuDNN, libDNN, ArmCL, 
OpenBLAS)  

AI integration/services 
• Cloud services (AWS, 
Google, Watson, Azure ...) 



    7/27 

Artifact evaluation and ACM taskforce on reproducibility 

In 2016 we joined special ACM taskforce on reproducibility  
to develop a common methodology for artifact sharing and evaluation across all SIGS! 

We co-authored “Result and Artifact Review and Badging” policy: 

http://www.acm.org/publications/policies/artifact-review-badging 

 

1) Define terminology 
Repeatability (Same team, same experimental setup) 
Replicability (Different team, same experimental setup) 
Reproducibility (Different team, different experimental setup) 

2) Prepare new sets of badges (covering various SIGs) 
Artifacts Evaluated – Functional 
Artifacts Evaluated – Reusable 
Artifacts Available 
Results Replicated 
Results Reproduced 
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Artifact Evaluation did not solve reusability issues 

• everyone uses their own ad-hoc scripts to 
prepare and run experiments with many 
hardwired paths 
 

• difficult (sometimes impossible) to reproduce 
empirical results across ever changing 
software and hardware stack  
(highly stochastic behavior) 
 

• practically impossible to customize and reuse 
artifacts (for example, try another compiler, 
library, data set) 
 

• practically impossible to run on another OS 
or platform 
 
• no common API and meta information for 
shared artifacts and results 
(benchmarks, data sets, tools) Result 

Algorithm 

GCC 4.1.x 

GCC 4.2.x 

GCC 4.3.x 

GCC 4.4.x 

GCC 4.5.x 

GCC 4.6.x 

GCC 4.7.x 

ICC 10.1 

ICC 11.0 

ICC 11.1 

ICC 12.0 

ICC 12.1 
LLVM 2.6 

LLVM 2.7 

LLVM 3.7 

LLVM 2.9 

LLVM 3.0 

Phoenix 

MVS 2013 

XLC 

Open64 

Jikes 
Testarossa 

OpenMP MPI 

HMPP 

OpenCL 

CUDA 4.x 
gprof prof 

perf 

oprofile 

PAPI 

TAU 

Scalasca 

VTune 

Amplifier 

predictive 
scheduling 

algorithm-
level 

TBB 

MKL 

ATLAS 

program-
level 

function-
level 

Codelet 

loop-level 

hardware 
counters 

IPA 
polyhedral 

transformations 

LTO 

pass 
reordering 

per phase 
reconfiguration 

frequency 

bandwidth 

HDD size 
TLB 

memory size 

execution time 

GCC 5.2 

LLVM 3.4 

SVM 

ARM v8 

Intel SandyBridge 

SSE4 

AVX 

CUDA 7.x 

SimpleScalar 

algorithm precision 



AI / ML 
use cases 

Our practical approach: common framework to share and reuse artifacts and knowledge 

AI frameworks 

 TensorFlow 

Caffe 

Caffe2 

CNTK 

Torch 

MXNet 

CK JSON API 

… 

Data sets 

KITTI 

COCO 

VOC 

ImageNet 

Real life objects 
from the 

community 

CK JSON API 

… 

Models 

AlexNet 

GoogleNet 

VGG 

ResNet 

SqueezeNet 

SqueezeDet 

SSD 

MobileNets 

CK JSON API 

… 

Libraries 

OpenBLAS 

ViennaCL 

CLBlast 

cuBLAS 

cuDNN 

TVM 

gemmlowp 

ArmCL 

CK JSON API 

… 

Hardware 

C
K

 J
S

O
N

 A
P

I 

CPU 

DSP 

GPU NN accelerators 

… FPGA 

Simulators 

1) Implement and share Python wrappers  
with a common API an unified JSON meta-information  

for common groups of research artifacts  
(models, data sets, libraries, frameworks, hardware, environments) 

Targets 

C
K

 J
S

O
N

 A
P

I 

Linux 

MacOS 

Windows 

Android 

… 

Open-source Collective Knowledge framework (CK) 

cKnowledge.org       ;      github.com/ctuning/ck  
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AI / ML 
use cases 

Wrappers allow to abstract access to code and data  
while getting rid of hardwired paths and dependencies 

Tool revision 1 

Tool revision 2 

Tool revision 2 

… 

Data v1 

Data v2 

Data v3 

… 

A
lg

o
ri

th
m

 
Our practical approach: common framework to share and reuse artifacts and knowledge 
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AI / ML 
use cases 

2) Gradually expose and unify information required for SW/HW co-design  
via JSON. Connect with CK cross-platform software and package manager. 

CK Python wrapper to abstract access to code and data 

C
K

 J
SO

N
 A

P
I 

Tool revision 1 

Gradually expose: 

Characteristics 

Choices 

Features 

State 

Actions 

SW/HW deps 

Tool revision 2 

Tool revision 2 

… 

Data v1 

Data v2 

Data v3 

… 

Detect required 
tool/data  version 

and set environment 

Automate installation 
of missing tools 

 and data 

Unify IO 

Simple CK command line API 
$ pip install ck 

$ ck pull repo:ck-tensorflow 

$ ck install package:lib-tensorflow-1.7.0-cuda 

$ ck install package –tags=tensorflowmodel,inception 

$ ck run program:tensorflow-classification 

Simple CK Python API 
import ck.kernel as ck 

r=ck.access( {‘action’:’install’, ‘module_uoa’:‘package’, 

   ‘data_uoa’:’lib-tensorflow-1.7.0-cuda’, ‘out’:’con’}) 

if r[‘return’]>0: return r 

Simple CK API 
for Java/C/C++/Fortran 

A
lg

o
ri

th
m

 
Our practical approach: common framework to share and reuse artifacts and knowledge 
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AI / ML 
use cases 

3) Assemble and share portable experimental workflows  
from customizable and reusable “plug&play” CK blocks as LEGO™ 

Our practical approach: common framework to share and reuse artifacts and knowledge 

Available libraries / skeletons 

Compilers 

Binary or byte code  

Hardware, 
simulators 

Run-time environment 

Run-time state  
of the system 

Inputs Various models 

Algorithm / source code 

AI framework 

Common JSON API 
JSON meta 

Distributed 
UID 

SW/HW 
deps 

Cross-
linking b       = B( c      , f       , s       )   

… … … … 

Flattened JSON vectors 

Implement universal, 
multi-objective and 
multi-dimensional  

auto-tuning, modeling 
and co-design 

Optimize behavior b  
of any object in the CK 

(program, library function, 
kernel, …) as a function  

of design and optimization 
choices c, features f  
and run-time state s 

See cKnowledge.org/shared-repos 
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AI / ML 
use cases 

3) Assemble and share portable experimental workflows  
from customizable and reusable “plug&play” CK blocks as LEGO™ 

Our practical approach: common framework to share and reuse artifacts and knowledge 

Available libraries / skeletons 

Compilers 

Binary or byte code  

Hardware, 
simulators 

Run-time environment 

Run-time state  
of the system 

Inputs Various models 

Algorithm / source code 

AI framework 

Common JSON API 
JSON meta 

Distributed 
UID 

SW/HW 
deps 

Cross-
linking b       = B( c      , f       , s       )   

… … … … 

Flattened JSON vectors 

Implement universal, 
multi-objective and 
multi-dimensional  

auto-tuning, modeling 
and co-design 

Optimize behavior b  
of any object in the CK 

(program, library function, 
kernel, …) as a function  

of design and optimization 
choices c, features f  
and run-time state s 

See cKnowledge.org/shared-repos 

Chaining CK wrappers to implement universal auto-tuning and modeling 

Public modular auto-tuning and machine  
learning repository and buildbot 

Unified  
web services Interdisciplinary crowd 

Choose 
exploration 

strategy 

Generate choices (code 
sample, data set, compiler, 

flags, architecture …) 

Compile 
source 
code 

Run 
code 

Test 
behavior 
normality 

Pareto 
filter 

Modeling  
and 

prediction 

Complexity 
reduction 

Shared scenarios from past research 

… 
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Ex
e

cu
ti

o
n

 t
im

e
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Device cost, $ 

*Most data is now publicly available in an interactive and reproducible form at cKnowledge.org/repo 

Simple CK-based Android app to crowdsource AI benchmarking 
//

 

20.0 

We evaluated ~3000 AI/SW/HW co-design configurations for efficiency 

Winning configurations 
on different frontiers 

• Hardware: 800+ distinct platforms provided by volunteers (mainly low-power CPUs and GPUs) 
• Algorithms: image classification, object detection 
• AI frameworks: TensorFlow, Caffe  
• Math libraries: OpenBLAS, CLBlast, ViennaCL, Eigen 
• Models: AlexNet, GoogleNet, SqueezeNet, MobileNets 
• Data sets: ImageNet, KITTI and user images 

Characteristics: 
• speed (execution time,sec.) 
• device cost ($) 
• energy (if available) 
• model accuracy 
• model size  
• memory usage   
• usage/training costs (if cloud) 

Out of 3000 AI/SW/HW configurations only 3 were selected  
on various Pareto frontiers. 

All AI/SW/HW configurations above Pareto frontiers lose competition (not suitable for AI)! 
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AI / ML 
use cases 

2018: many cross-

disciplinary R&D groups 
(ML/AI/systems) 

AI hardware 
• All major vendors 
(Google, NVIDIA, ARM, 
Intel, IBM, Qualcomm, 
Apple, AMD …) 

AI models 
Numerous groups in 
academia & industry 
(DeepMind, OpenAI, 
Microsoft, Facebook …) 

AI software 
• AI frameworks 
(TensorFlow, MXNet, 
Caffe2, CNTK, Theano) 
• AI libraries 
(cuDNN, libDNN, ArmCL, 
OpenBLAS)  

AI integration/services 
• Cloud services  
(AWS, Google, Azure ...) 

ReQuEST: reproducible tournaments on Pareto-efficient SW/HW co-desiging of AI workloads 

cKnowledge.org/request 

Finding the most efficient AI/SW/HW stacks 
across diverse models, data sets and platforms 

via open competitions, 
share them as reusable CK components  

and visualize on a public scoreboard 

  

Collective Knowledge Platform 

Interdisciplinary 
community 

Organizers (A-Z) 

Luis Ceze, University of Washington 
Natalie Enright Jerger, University of Toronto 
Babak Falsafi, EPFL 
Grigori Fursin, cTuning foundation/dividiti 
Anton Lokhmotov, dividiti 
Thierry Moreau, University of Washington 
Adrian Sampson, Cornell University 
Phillip Stanley Marbell, University of Cambridge 
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3) Regular ReQuEST tournaments sponsored by ACM 

cKnowledge.org/request 

and organized by leading universities  
(Cornell, EPFL, Washington, Toronto, Cambridge) 

and the growing industrial consortium 
to find the most efficient AI/SW/HW stacks  

across diverse models, data sets and platforms 
and share them as CK components 

  

1) Repositories of customizable, portable  
and plug&play AI/SW/HW CK components 

with exposed design and optimization choices 

  
AI frameworks 

 TensorFlow 

Caffe 

Caffe2 

CNTK 

Torch 

MXNet 

Models 

AlexNet 

GoogleNet 

VGG 

ResNet 

SqueezeNet 

SqueezeDet 

SSD 

MobileNets 

Data sets 

KITTI 

COCO 

VOC 

ImageNet 

Real life objects 
from the 

community 

Libraries 

OpenBLAS 

ViennaCL 

CLBlast 

cuBLAS 

cuDNN 

TVM 

gemmlowp 

ArmCL 

CK JSON API CK JSON API 
CK JSON API 

CK JSON API 

Targets 

C
K

 J
S

O
N

 A
P

I 

Linux 

MacOS 

Windows 

Android 

… 

… 

… … 

… 

Hardware 

C
K

 J
S

O
N

 A
P

I 

CPU 

DSP 

GPU 

NN accelerators 

… 
FPGA 

2) Customizable CK workflow framework 
for automatic AI/SW/HW co-design 

Assemble scenarios such as image classification as LEGO™ 

Simulators 

Models 

CK JSON API 

Software 

CK JSON API 
Data sets 

CK JSON API 

Hardware 

CK JSON API 

4) Winning AI/SW/HW stacks and workflows  
are presented on a live scoreboard and become available  
for further customization, optimization and reuse via CK 

cKnowledge.org/repo 

different co-design categories 

sp
ee

d
 

accuracy 

sp
ee

d
 

cost 

ac
cu

ra
cy

 

size 

… 

ReQuEST vision: common SW/HW co-design platform and repository 
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Advisory Board 

Advisory/industrial board (A-Z) 

• Michaela Blott, Xilinx 
• Unmesh Bordoloi, General Motors 
• Ofer Dekel, Microsoft 
• Maria Girone, CERN openlab 
• Wayne Graves, ACM 
• Vinod Grover, NVIDIA 
• Sumit Gupta, IBM 
• James Hetherington, Alan Turing Institute 
• Steve Keckler, NVIDIA 
• Wei Li, Intel 
• Colin Osborne, ARM 
• Andrew Putnam, Microsoft 
• Boris Shulkin, Magna 
• Greg Stoner, AMD 
• Alex Wade, Chan Zuckerberg Initiative 
• Peng Wu, Huawei 
• Cliff Young, Google 

Long term goal of such repository with reusable artifacts  
is to help accelerate AI/ML innovation and speed up its adoption by industry!  

Advisory board suggests algorithms, 
data sets, models and platforms  

for competitions. 

 

For a proof-of-concept our advisory board 
suggested to build a public repository of the 
most efficient, portable, customizable and 
reusable image classification algorithms  
in the CK format  optimized across diverse 
models, data sets and devices from IoT to HPC  
in terms of accuracy, speed, energy, size, 
complexity and costs. 
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1st reproducible ReQuEST tournament and workshop at ASPLOS’18 

AlexNet, VGG16 

Nvidia Jetson TX2; 
Raspberry Pi  

with ARM  

TensorFlow; Keras;  
Avro 

ResNet-50;  
Inception-V3; SSD 

32-bit ; 8-bit 

Intel C++ Compiler 
17.0.5 20170817 

Intel Caffe ;  
BVLC Caffe 

AWS; Xeon® 
Platinum 8124M 

OpenBLAS  
vs ArmCL 

GCC; LLVM 

MXNet; 
NNVM/TVM 

Firefly-RK3399 

VGG16, MobileNet 
and ResNet-50 

MXNet; 
NNVM/TVM 

Pynq 
(Xilinx FGPA)  

 
 
 

ResNet-18 
 
 

ArmCL 17.12 vs 
18.03 vs dividiti 

(OpenCL) 
 

GCC 

HiKey 960 (GPU) 

MobileNets 

Demo workflow 

Functional? 

CK unification 

CK experiments 

CK dashboard 

Open evaluation: https://github.com/ctuning/ck-request-asplos18-results via tickets 

8 intentions to submit and 5 submitted image classification workflows with unified Artifact Appendices 

https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
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1st reproducible ReQuEST tournament and workshop at ASPLOS’18 

AlexNet, VGG16 

Nvidia Jetson TX2; 
Raspberry Pi  

with ARM  

TensorFlow; Keras;  
Avro 

ResNet-50;  
Inception-V3; SSD 

32-bit ; 8-bit 

Intel C++ Compiler 
17.0.5 20170817 

Intel Caffe ;  
BVLC Caffe 

AWS; Xeon® 
Platinum 8124M 

OpenBLAS  
vs ArmCL 

GCC; LLVM 

MXNet; 
NNVM/TVM 

Firefly-RK3399 

VGG16, MobileNet 
and ResNet-50 

MXNet; 
NNVM/TVM 

Pynq 
(Xilinx FGPA)  

 
 

ResNet-18 
 

ArmCL 17.12 vs 
18.03 vs dividiti 

(OpenCL) 
 

GCC 

HiKey 960 (GPU) 

MobileNets 

Demo workflow 

Functional? 

CK unification 

CK experiments 

CK dashboard 

Open evaluation: https://github.com/ctuning/ck-request-asplos18-results via tickets 

Very time consuming! 
2..4 weeks per workflow! 

8 intentions to submit and 5 submitted image classification workflows with unified Artifact Appendices 

https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
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1st reproducible ReQuEST tournament and workshop at ASPLOS’18 

8 intentions to submit and 5 submitted image classification workflows with unified Artifact Appendices 

AlexNet, VGG16 

Nvidia Jetson TX2; 
Raspberry Pi  

with ARM  

TensorFlow; Keras;  
Avro 

ResNet-50;  
Inception-V3; SSD 

32-bit ; 8-bit 

Intel C++ Compiler 
17.0.5 20170817 

Intel Caffe ;  
BVLC Caffe 

AWS; Xeon® 
Platinum 8124M 

OpenBLAS  
vs ArmCL 

GCC; LLVM 

MXNet; 
NNVM/TVM 

Firefly-RK3399 

VGG16, MobileNet 
and ResNet-50 

MXNet; 
NNVM/TVM 

Pynq 
(Xilinx FGPA)  

 

ResNet-18 

ArmCL 17.12 vs 
18.03 vs dividiti 

(OpenCL) 

GCC 

HiKey 960 (GPU) 

MobileNets 

Demo workflow 

Functional? ✔ ✔ ✔ ✔ ✔ 

CK unification ✔ ✔ ✔ ✔ 

CK experiments ✔ ✔ ✔ 

CK dashboard ✔ ✔ 

Open evaluation: https://github.com/ctuning/ck-request-asplos18-results via tickets 

https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
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Our example: exploring MobileNets design using Arm Compute Library 

https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl 

“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision 
Applications” (Andrew G. Howard et al., 2017, https://arxiv.org/abs/1704.04861):  

● Parameterised CNN family using depthwise separable convolutions. 
● Channel multiplier: 1.00, 0.75, 0.50, 0.25 - marker shape (see below). 
● Input image resolution: 224, 192, 160, 128 - marker size. 

Arm Compute Library: open-source, optimised for Neon CPUs and Mali GPUs. 
● 2 convolution approaches - marker shape depends on channel multiplier: 

○ “Direct”: 1.00 - pentagon, 0.75 - square, 0.50 - triangle-up, 0.25 - circle. 
○ “Matrix-multiplication” (MM):  

        1.00 - star, 0.75 - diamond, 0.50 - triangle-down, 0.25 -  octagon. 
● 4 library versions - marker colour: 

○ “17.12”: no opts; “18.01”: dividiti’s direct+MM opts;  
“18.03”: Arm’s MM opts; “dv/dt”: dividiti’s new direct opts. 

https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://arxiv.org/abs/1704.04861
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Our example: exploring MobileNets design using Arm Compute Library 
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Our example: exploring MobileNets design using Arm Compute Library 
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Our example: exploring MobileNets design using Arm Compute Library 
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http://cKnowledge.org/request-results 

 

https://github.com/ctuning/ck-request-asplos18-results 

Live scoreboard – continuously updated! 

http://cknowledge.org/request-results
http://cknowledge.org/request-results
http://cknowledge.org/request-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
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• Finalize and share all artifacts, workflows and results as “plug&play” CK components  
(common JSON API and meta description) 
• Integrate with ACM Digital Library;    provide open report to the ReQuEST advisory board 
• Continue improving framework and scoreboard (still a long way to go!) 
• Gradually expose more design and optimization knobs at all AI/SW/HW levels 
• Collaboratively improve models and find missing features  
• Enable distributed autotuning and learning 
• Validate results in real systems while sharing more data sets and mispredictions! 
• Prepare next tournaments (likely on distributed training) 
• Support validation of experimental results at other events (EMC2, WAX, LPIRC, ASPLOS) 

Only at the beginning of a long journey - next steps 

 
ResCuE-HPC: 1st Workshop  

on Reproducible, Customizable 
and Portable Workows for HPC 

 
SuperComputing’18 

 
Todd Gamblin, LLNL        Michela Taufer, U.Delaware 
Milos Puzovic, Hartree    Grigori Fursin, cTuning/dividiti 



    27/27 cKnowledge.org/request          cKnowledge.org/partners          cKnowledge.org/repo 

Participate, collaborate, sponsor … 

Advisory/industrial board (A-Z) 

• Michaela Blott, Xilinx 
• Unmesh Bordoloi, General Motors 
• Ofer Dekel, Microsoft 
• Maria Girone, CERN openlab 
• Wayne Graves, ACM 
• Vinod Grover, NVIDIA 
• Sumit Gupta, IBM 
• James Hetherington, Alan Turing Institute 
• Steve Keckler, NVIDIA 
• Wei Li, Intel 
• Colin Osborne, ARM 
• Andrew Putnam, Microsoft 
• Boris Shulkin, Magna 
• Greg Stoner, AMD 
• Alex Wade, Chan Zuckerberg Initiative 
• Peng Wu, Huawei 
• Cliff Young, Google 

Building an open repository of “plug&play” AI blocks 
continuously optimized across diverse data sets, 
models and platforms from the cloud to edge… 

http://xored.com/
http://gm.com/
https://www.cam.ac.uk/
https://www.imperial.ac.uk/
http://www.ed.ac.uk/

