
Introducing the ReQuEST competitions,
platform, scoreboard and long-term vision

Open and reproducible tournaments for Pareto-efficient AI/SW/HW co-design

Grigori Fursin
Chief Scientist, non-profit cTuning foundation

CTO and co-founder, dividiti

 2/27

AI / ML
use cases

Looking back to 1993: my first cross-disciplinary R&D project with industry

1

-1
θ - threshold

X

Y

Semiconductor neuron
(analog computation)

Designing brain-inspired computer

10x smaller 10x more accurate
100x faster / more energy efficient

then traditional platforms

 3/27

AI / ML
use cases

Designing brain-inspired computer

10x smaller 10x more accurate
100x faster / more energy efficient

then traditional platforms

Emulation of training/prediction
on personal computers

or supercomputers (Cray T3D)

Borland / Cray C compilers

Binary with assembler inlines

PSpice
simulator

Run-time environment

Intel/AMD/Alpha
hardware

Images

Hopfiled Neural Network

... failed because modeling
using available HW/SW was

• too complex
• too slow

• too unreliable and costly
and we didn’t have GPGPUs and

highly optimized math/NN libraries

Must have been solved by now
with new technology?

Are we there yet?

Looking back to 1993: my first cross-disciplinary R&D project with industry

 4/27

Practical and successful AI system
must be co-designed

AI / ML
use cases

Data sets

Hardware Algorithms

Libraries

Models

for various form factors
(IoT, mobile, data centers)

while trading off multiple constraints
(accuracy, speed, energy, size, costs)

and maximizing ROI
(faster time to market, R&D sustainability,

much better than all competitors)

25 years later: AI and ML revolutionizes multiple industries

2018: many cross-

disciplinary R&D groups
(ML/AI/systems)

AI hardware
• All major vendors
(Google, NVIDIA, IBM,
Intel, ARM, Qualcomm,
Apple, AMD …)

AI models
Numerous groups in
academia & industry
(DeepMind, IBM, OpenAI,
Microsoft, Facebook …)

AI software
• AI frameworks
(TensorFlow, MXNet,
Caffe2, CNTK, Theano)
• AI libraries
(cuDNN, libDNN, ArmCL,
OpenBLAS)

AI integration/services
• Cloud services (AWS,
Google, Watson, Azure ...)

Are we there yet?

 5/27

AI / ML
use cases

Numerous publications and reports

Machine learning and artificial intelligence became very hot topics

2018: many cross-

disciplinary R&D groups
(ML/AI/systems)

AI hardware
• All major vendors
(Google, NVIDIA, IBM,
Intel, ARM, Qualcomm,
Apple, AMD …)

AI models
Numerous groups in
academia & industry
(DeepMind, IBM, OpenAI,
Microsoft, Facebook …)

AI software
• AI frameworks
(TensorFlow, MXNet,
Caffe2, CNTK, Theano)
• AI libraries
(cuDNN, libDNN, ArmCL,
OpenBLAS)

AI integration/services
• Cloud services (AWS,
Google, Watson, Azure ...)

Numerous models, data sets,
benchmarks, libraries and tools

Multiple competitions
focusing mostly on accuracy (Kaggle)

A few competitions focusing
on optimizing other metrics

besides accuracy:

LPIRC – Low-Power
Image Recognition Challenge

 6/27

AI / ML
use cases

Industrial adoption of AI/ML is still very slow

• Technological chaos: continuously
changing algorithm/model/SW/HW stack

Often result in over-provisioned,
under-performing, inaccurate

and expensive technology

Will die
Must be redesigned

• Outdated/non-representative training sets

• No established methodologies and
automation to benchmark and co-design
efficient SW/HW/model stack

• Very little artifact sharing & reuse
(optimizations, features, mispredictions, etc)

• Growing gap between academic and
industrial research (toy examples)

2018: many cross-

disciplinary R&D groups
(ML/AI/systems)

AI hardware
• All major vendors
(Google, NVIDIA, IBM,
Intel, ARM, Qualcomm,
Apple, AMD …)

AI models
Numerous groups in
academia & industry
(DeepMind, IBM, OpenAI,
Microsoft, Facebook …)

AI software
• AI frameworks
(TensorFlow, MXNet,
Caffe2, CNTK, Theano)
• AI libraries
(cuDNN, libDNN, ArmCL,
OpenBLAS)

AI integration/services
• Cloud services (AWS,
Google, Watson, Azure ...)

 7/27

Artifact evaluation and ACM taskforce on reproducibility

In 2016 we joined special ACM taskforce on reproducibility
to develop a common methodology for artifact sharing and evaluation across all SIGS!

We co-authored “Result and Artifact Review and Badging” policy:

http://www.acm.org/publications/policies/artifact-review-badging

1) Define terminology
Repeatability (Same team, same experimental setup)
Replicability (Different team, same experimental setup)
Reproducibility (Different team, different experimental setup)

2) Prepare new sets of badges (covering various SIGs)
Artifacts Evaluated – Functional
Artifacts Evaluated – Reusable
Artifacts Available
Results Replicated
Results Reproduced

 8/27

Artifact Evaluation did not solve reusability issues

• everyone uses their own ad-hoc scripts to
prepare and run experiments with many
hardwired paths

• difficult (sometimes impossible) to reproduce
empirical results across ever changing
software and hardware stack
(highly stochastic behavior)

• practically impossible to customize and reuse
artifacts (for example, try another compiler,
library, data set)

• practically impossible to run on another OS
or platform

• no common API and meta information for
shared artifacts and results
(benchmarks, data sets, tools) Result

Algorithm

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x

GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1
LLVM 2.6

LLVM 2.7

LLVM 3.7

LLVM 2.9

LLVM 3.0

Phoenix

MVS 2013

XLC

Open64

Jikes
Testarossa

OpenMP MPI

HMPP

OpenCL

CUDA 4.x
gprof prof

perf

oprofile

PAPI

TAU

Scalasca

VTune

Amplifier

predictive
scheduling

algorithm-
level

TBB

MKL

ATLAS

program-
level

function-
level

Codelet

loop-level

hardware
counters

IPA
polyhedral

transformations

LTO

pass
reordering

per phase
reconfiguration

frequency

bandwidth

HDD size
TLB

memory size

execution time

GCC 5.2

LLVM 3.4

SVM

ARM v8

Intel SandyBridge

SSE4

AVX

CUDA 7.x

SimpleScalar

algorithm precision

AI / ML
use cases

Our practical approach: common framework to share and reuse artifacts and knowledge

AI frameworks

 TensorFlow

Caffe

Caffe2

CNTK

Torch

MXNet

CK JSON API

…

Data sets

KITTI

COCO

VOC

ImageNet

Real life objects
from the

community

CK JSON API

…

Models

AlexNet

GoogleNet

VGG

ResNet

SqueezeNet

SqueezeDet

SSD

MobileNets

CK JSON API

…

Libraries

OpenBLAS

ViennaCL

CLBlast

cuBLAS

cuDNN

TVM

gemmlowp

ArmCL

CK JSON API

…

Hardware

C
K

 J
S

O
N

 A
P

I

CPU

DSP

GPU NN accelerators

… FPGA

Simulators

1) Implement and share Python wrappers
with a common API an unified JSON meta-information

for common groups of research artifacts
(models, data sets, libraries, frameworks, hardware, environments)

Targets

C
K

 J
S

O
N

 A
P

I

Linux

MacOS

Windows

Android

…

Open-source Collective Knowledge framework (CK)

cKnowledge.org ; github.com/ctuning/ck

 10/27

AI / ML
use cases

Wrappers allow to abstract access to code and data
while getting rid of hardwired paths and dependencies

Tool revision 1

Tool revision 2

Tool revision 2

…

Data v1

Data v2

Data v3

…

A
lg

o
ri

th
m

Our practical approach: common framework to share and reuse artifacts and knowledge

 11/27

AI / ML
use cases

2) Gradually expose and unify information required for SW/HW co-design
via JSON. Connect with CK cross-platform software and package manager.

CK Python wrapper to abstract access to code and data

C
K

 J
SO

N
 A

P
I

Tool revision 1

Gradually expose:

Characteristics

Choices

Features

State

Actions

SW/HW deps

Tool revision 2

Tool revision 2

…

Data v1

Data v2

Data v3

…

Detect required
tool/data version

and set environment

Automate installation
of missing tools

 and data

Unify IO

Simple CK command line API
$ pip install ck

$ ck pull repo:ck-tensorflow

$ ck install package:lib-tensorflow-1.7.0-cuda

$ ck install package –tags=tensorflowmodel,inception

$ ck run program:tensorflow-classification

Simple CK Python API
import ck.kernel as ck

r=ck.access({‘action’:’install’, ‘module_uoa’:‘package’,

 ‘data_uoa’:’lib-tensorflow-1.7.0-cuda’, ‘out’:’con’})

if r[‘return’]>0: return r

Simple CK API
for Java/C/C++/Fortran

A
lg

o
ri

th
m

Our practical approach: common framework to share and reuse artifacts and knowledge

 12/27

AI / ML
use cases

3) Assemble and share portable experimental workflows
from customizable and reusable “plug&play” CK blocks as LEGO™

Our practical approach: common framework to share and reuse artifacts and knowledge

Available libraries / skeletons

Compilers

Binary or byte code

Hardware,
simulators

Run-time environment

Run-time state
of the system

Inputs Various models

Algorithm / source code

AI framework

Common JSON API
JSON meta

Distributed
UID

SW/HW
deps

Cross-
linking b = B(c , f , s)

… … … …

Flattened JSON vectors

Implement universal,
multi-objective and
multi-dimensional

auto-tuning, modeling
and co-design

Optimize behavior b
of any object in the CK

(program, library function,
kernel, …) as a function

of design and optimization
choices c, features f
and run-time state s

See cKnowledge.org/shared-repos

 13/27

AI / ML
use cases

3) Assemble and share portable experimental workflows
from customizable and reusable “plug&play” CK blocks as LEGO™

Our practical approach: common framework to share and reuse artifacts and knowledge

Available libraries / skeletons

Compilers

Binary or byte code

Hardware,
simulators

Run-time environment

Run-time state
of the system

Inputs Various models

Algorithm / source code

AI framework

Common JSON API
JSON meta

Distributed
UID

SW/HW
deps

Cross-
linking b = B(c , f , s)

… … … …

Flattened JSON vectors

Implement universal,
multi-objective and
multi-dimensional

auto-tuning, modeling
and co-design

Optimize behavior b
of any object in the CK

(program, library function,
kernel, …) as a function

of design and optimization
choices c, features f
and run-time state s

See cKnowledge.org/shared-repos

Chaining CK wrappers to implement universal auto-tuning and modeling

Public modular auto-tuning and machine
learning repository and buildbot

Unified
web services Interdisciplinary crowd

Choose
exploration

strategy

Generate choices (code
sample, data set, compiler,

flags, architecture …)

Compile
source
code

Run
code

Test
behavior
normality

Pareto
filter

Modeling
and

prediction

Complexity
reduction

Shared scenarios from past research

…

 14/27

Ex
e

cu
ti

o
n

 t
im

e
, s

e
c.

Device cost, $

*Most data is now publicly available in an interactive and reproducible form at cKnowledge.org/repo

Simple CK-based Android app to crowdsource AI benchmarking
//

20.0

We evaluated ~3000 AI/SW/HW co-design configurations for efficiency

Winning configurations
on different frontiers

• Hardware: 800+ distinct platforms provided by volunteers (mainly low-power CPUs and GPUs)
• Algorithms: image classification, object detection
• AI frameworks: TensorFlow, Caffe
• Math libraries: OpenBLAS, CLBlast, ViennaCL, Eigen
• Models: AlexNet, GoogleNet, SqueezeNet, MobileNets
• Data sets: ImageNet, KITTI and user images

Characteristics:
• speed (execution time,sec.)
• device cost ($)
• energy (if available)
• model accuracy
• model size
• memory usage
• usage/training costs (if cloud)

Out of 3000 AI/SW/HW configurations only 3 were selected
on various Pareto frontiers.

All AI/SW/HW configurations above Pareto frontiers lose competition (not suitable for AI)!

 15/27

AI / ML
use cases

2018: many cross-

disciplinary R&D groups
(ML/AI/systems)

AI hardware
• All major vendors
(Google, NVIDIA, ARM,
Intel, IBM, Qualcomm,
Apple, AMD …)

AI models
Numerous groups in
academia & industry
(DeepMind, OpenAI,
Microsoft, Facebook …)

AI software
• AI frameworks
(TensorFlow, MXNet,
Caffe2, CNTK, Theano)
• AI libraries
(cuDNN, libDNN, ArmCL,
OpenBLAS)

AI integration/services
• Cloud services
(AWS, Google, Azure ...)

ReQuEST: reproducible tournaments on Pareto-efficient SW/HW co-desiging of AI workloads

cKnowledge.org/request

Finding the most efficient AI/SW/HW stacks
across diverse models, data sets and platforms

via open competitions,
share them as reusable CK components

and visualize on a public scoreboard

Collective Knowledge Platform

Interdisciplinary
community

Organizers (A-Z)

Luis Ceze, University of Washington
Natalie Enright Jerger, University of Toronto
Babak Falsafi, EPFL
Grigori Fursin, cTuning foundation/dividiti
Anton Lokhmotov, dividiti
Thierry Moreau, University of Washington
Adrian Sampson, Cornell University
Phillip Stanley Marbell, University of Cambridge

 16/27

3) Regular ReQuEST tournaments sponsored by ACM

cKnowledge.org/request

and organized by leading universities
(Cornell, EPFL, Washington, Toronto, Cambridge)

and the growing industrial consortium
to find the most efficient AI/SW/HW stacks

across diverse models, data sets and platforms
and share them as CK components

1) Repositories of customizable, portable
and plug&play AI/SW/HW CK components

with exposed design and optimization choices

AI frameworks

 TensorFlow

Caffe

Caffe2

CNTK

Torch

MXNet

Models

AlexNet

GoogleNet

VGG

ResNet

SqueezeNet

SqueezeDet

SSD

MobileNets

Data sets

KITTI

COCO

VOC

ImageNet

Real life objects
from the

community

Libraries

OpenBLAS

ViennaCL

CLBlast

cuBLAS

cuDNN

TVM

gemmlowp

ArmCL

CK JSON API CK JSON API
CK JSON API

CK JSON API

Targets

C
K

 J
S

O
N

 A
P

I

Linux

MacOS

Windows

Android

…

…

… …

…

Hardware

C
K

 J
S

O
N

 A
P

I

CPU

DSP

GPU

NN accelerators

…
FPGA

2) Customizable CK workflow framework
for automatic AI/SW/HW co-design

Assemble scenarios such as image classification as LEGO™

Simulators

Models

CK JSON API

Software

CK JSON API
Data sets

CK JSON API

Hardware

CK JSON API

4) Winning AI/SW/HW stacks and workflows
are presented on a live scoreboard and become available
for further customization, optimization and reuse via CK

cKnowledge.org/repo

different co-design categories

sp
ee

d

accuracy

sp
ee

d

cost

ac
cu

ra
cy

size

…

ReQuEST vision: common SW/HW co-design platform and repository

 17/27

Advisory Board

Advisory/industrial board (A-Z)

• Michaela Blott, Xilinx
• Unmesh Bordoloi, General Motors
• Ofer Dekel, Microsoft
• Maria Girone, CERN openlab
• Wayne Graves, ACM
• Vinod Grover, NVIDIA
• Sumit Gupta, IBM
• James Hetherington, Alan Turing Institute
• Steve Keckler, NVIDIA
• Wei Li, Intel
• Colin Osborne, ARM
• Andrew Putnam, Microsoft
• Boris Shulkin, Magna
• Greg Stoner, AMD
• Alex Wade, Chan Zuckerberg Initiative
• Peng Wu, Huawei
• Cliff Young, Google

Long term goal of such repository with reusable artifacts
is to help accelerate AI/ML innovation and speed up its adoption by industry!

Advisory board suggests algorithms,
data sets, models and platforms

for competitions.

For a proof-of-concept our advisory board
suggested to build a public repository of the
most efficient, portable, customizable and
reusable image classification algorithms
in the CK format optimized across diverse
models, data sets and devices from IoT to HPC
in terms of accuracy, speed, energy, size,
complexity and costs.

 18/27

1st reproducible ReQuEST tournament and workshop at ASPLOS’18

AlexNet, VGG16

Nvidia Jetson TX2;
Raspberry Pi

with ARM

TensorFlow; Keras;
Avro

ResNet-50;
Inception-V3; SSD

32-bit ; 8-bit

Intel C++ Compiler
17.0.5 20170817

Intel Caffe ;
BVLC Caffe

AWS; Xeon®
Platinum 8124M

OpenBLAS
vs ArmCL

GCC; LLVM

MXNet;
NNVM/TVM

Firefly-RK3399

VGG16, MobileNet
and ResNet-50

MXNet;
NNVM/TVM

Pynq
(Xilinx FGPA)

ResNet-18

ArmCL 17.12 vs
18.03 vs dividiti

(OpenCL)

GCC

HiKey 960 (GPU)

MobileNets

Demo workflow

Functional?

CK unification

CK experiments

CK dashboard

Open evaluation: https://github.com/ctuning/ck-request-asplos18-results via tickets

8 intentions to submit and 5 submitted image classification workflows with unified Artifact Appendices

https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results

 19/27

1st reproducible ReQuEST tournament and workshop at ASPLOS’18

AlexNet, VGG16

Nvidia Jetson TX2;
Raspberry Pi

with ARM

TensorFlow; Keras;
Avro

ResNet-50;
Inception-V3; SSD

32-bit ; 8-bit

Intel C++ Compiler
17.0.5 20170817

Intel Caffe ;
BVLC Caffe

AWS; Xeon®
Platinum 8124M

OpenBLAS
vs ArmCL

GCC; LLVM

MXNet;
NNVM/TVM

Firefly-RK3399

VGG16, MobileNet
and ResNet-50

MXNet;
NNVM/TVM

Pynq
(Xilinx FGPA)

ResNet-18

ArmCL 17.12 vs
18.03 vs dividiti

(OpenCL)

GCC

HiKey 960 (GPU)

MobileNets

Demo workflow

Functional?

CK unification

CK experiments

CK dashboard

Open evaluation: https://github.com/ctuning/ck-request-asplos18-results via tickets

Very time consuming!
2..4 weeks per workflow!

8 intentions to submit and 5 submitted image classification workflows with unified Artifact Appendices

https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results

 20/27

1st reproducible ReQuEST tournament and workshop at ASPLOS’18

8 intentions to submit and 5 submitted image classification workflows with unified Artifact Appendices

AlexNet, VGG16

Nvidia Jetson TX2;
Raspberry Pi

with ARM

TensorFlow; Keras;
Avro

ResNet-50;
Inception-V3; SSD

32-bit ; 8-bit

Intel C++ Compiler
17.0.5 20170817

Intel Caffe ;
BVLC Caffe

AWS; Xeon®
Platinum 8124M

OpenBLAS
vs ArmCL

GCC; LLVM

MXNet;
NNVM/TVM

Firefly-RK3399

VGG16, MobileNet
and ResNet-50

MXNet;
NNVM/TVM

Pynq
(Xilinx FGPA)

ResNet-18

ArmCL 17.12 vs
18.03 vs dividiti

(OpenCL)

GCC

HiKey 960 (GPU)

MobileNets

Demo workflow

Functional? ✔ ✔ ✔ ✔ ✔

CK unification ✔ ✔ ✔ ✔

CK experiments ✔ ✔ ✔

CK dashboard ✔ ✔

Open evaluation: https://github.com/ctuning/ck-request-asplos18-results via tickets

https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results

 21/27

Our example: exploring MobileNets design using Arm Compute Library

https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl

“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications” (Andrew G. Howard et al., 2017, https://arxiv.org/abs/1704.04861):

● Parameterised CNN family using depthwise separable convolutions.
● Channel multiplier: 1.00, 0.75, 0.50, 0.25 - marker shape (see below).
● Input image resolution: 224, 192, 160, 128 - marker size.

Arm Compute Library: open-source, optimised for Neon CPUs and Mali GPUs.
● 2 convolution approaches - marker shape depends on channel multiplier:

○ “Direct”: 1.00 - pentagon, 0.75 - square, 0.50 - triangle-up, 0.25 - circle.
○ “Matrix-multiplication” (MM):

 1.00 - star, 0.75 - diamond, 0.50 - triangle-down, 0.25 - octagon.
● 4 library versions - marker colour:

○ “17.12”: no opts; “18.01”: dividiti’s direct+MM opts;
“18.03”: Arm’s MM opts; “dv/dt”: dividiti’s new direct opts.

https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://github.com/dividiti/ck-request-asplos18-mobilenets-armcl-opencl
https://arxiv.org/abs/1704.04861

 22/27

Our example: exploring MobileNets design using Arm Compute Library

 23/27

Our example: exploring MobileNets design using Arm Compute Library

 24/27

Our example: exploring MobileNets design using Arm Compute Library

 25/27

http://cKnowledge.org/request-results

https://github.com/ctuning/ck-request-asplos18-results

Live scoreboard – continuously updated!

http://cknowledge.org/request-results
http://cknowledge.org/request-results
http://cknowledge.org/request-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck-request-asplos18-results

 26/27

• Finalize and share all artifacts, workflows and results as “plug&play” CK components
(common JSON API and meta description)
• Integrate with ACM Digital Library; provide open report to the ReQuEST advisory board
• Continue improving framework and scoreboard (still a long way to go!)
• Gradually expose more design and optimization knobs at all AI/SW/HW levels
• Collaboratively improve models and find missing features
• Enable distributed autotuning and learning
• Validate results in real systems while sharing more data sets and mispredictions!
• Prepare next tournaments (likely on distributed training)
• Support validation of experimental results at other events (EMC2, WAX, LPIRC, ASPLOS)

Only at the beginning of a long journey - next steps

ResCuE-HPC: 1st Workshop

on Reproducible, Customizable
and Portable Workows for HPC

SuperComputing’18

Todd Gamblin, LLNL Michela Taufer, U.Delaware
Milos Puzovic, Hartree Grigori Fursin, cTuning/dividiti

 27/27 cKnowledge.org/request cKnowledge.org/partners cKnowledge.org/repo

Participate, collaborate, sponsor …

Advisory/industrial board (A-Z)

• Michaela Blott, Xilinx
• Unmesh Bordoloi, General Motors
• Ofer Dekel, Microsoft
• Maria Girone, CERN openlab
• Wayne Graves, ACM
• Vinod Grover, NVIDIA
• Sumit Gupta, IBM
• James Hetherington, Alan Turing Institute
• Steve Keckler, NVIDIA
• Wei Li, Intel
• Colin Osborne, ARM
• Andrew Putnam, Microsoft
• Boris Shulkin, Magna
• Greg Stoner, AMD
• Alex Wade, Chan Zuckerberg Initiative
• Peng Wu, Huawei
• Cliff Young, Google

Building an open repository of “plug&play” AI blocks
continuously optimized across diverse data sets,
models and platforms from the cloud to edge…

http://xored.com/
http://gm.com/
https://www.cam.ac.uk/
https://www.imperial.ac.uk/
http://www.ed.ac.uk/

