Advances and Prospects for In-memory Computing

Naveen Verma (<u>nverma@princeton.edu</u>), L.-Y. Chen, P. Deaville, H. Jia, J. Lee, M. Ozatay, R. Pathak, Y. Tang, H. Valavi, B. Zhang, J. Zhang

Dec. 13, 2019

The memory wall

Separating memory from compute fundamentally raises a communication cost

More data \rightarrow bigger array \rightarrow larger comm. distance \rightarrow more comm. energy

2

So, we should <u>amortize</u> data movement

- **Reuse accessed data for compute** • operations
- **Specialized (memory-compute integrated)** • architectures

 b_N

b45

b25

b15

c25

c35

In-memory computing (IMC)

- In SRAM mode, matrix A stored in bit cells <u>row-by-row</u>
- In IMC mode, many WLs driven <u>simultaneously</u>
 - \rightarrow amortize comm. cost inside array
- Can apply to diff. mem. Technologies → enhanced scalability
 - \rightarrow embedded non-volatility

[J. Zhang, VLSI'16][J. Zhang, JSSC'17]

The basic tradeoffs

<u>CONSIDER</u>: Accessing *D* bits of data associated with computation, from array with \sqrt{D} columns $\times \sqrt{D}$ rows.

	Memory &
C	omputation
(D	^{1/2} ×D ^{1/2} array)

Metric	Traditional	In-memory
Bandwidth	$1/D^{1/2}$	1
Latency	D	1
Energy	$D^{3/2}$	~D
SNR	1	~1/D ^{1/2}

- IMC benefits energy/delay at cost of SNR
- SNR-focused systems design is critical (circuits, architectures, algorithms)

IMC as a spatial architecture

Assume:

- 1k dimensionality
- 4-b multiplies
- 45nm CMOS

Operation	Digital-PE Energy (fJ)	Bit-cell Energy (fJ)
Storage	250	
Multiplication	100	50
Accumulation	200	
Communication	40	5
Total	590	55

Where does IMC stand today?

- Potential for 10× higher efficiency & throughput
- Limited scale, robustness, configurability

IMC challenge (1): analog computation

Need analog to 'fit' compute in bit cells (SNR limited by analog non-idealities)
 → Must be feasible/competitive @ 16/12/7nm

IMC Challenge (2): heterogeneous computing

Matrix-vector multiply is only 70-90% of operations
 → IMC must integrate in programmable, heterogenous architectures

IMC Challenge (3): efficient application mappings

IMC engines must be 'virtualized'

- \rightarrow IMC amortizes MVM costs, not weight loading. But...
- \rightarrow Need new mapping algorithms (physical tradeoffs very diff. than digital engines)

Activation Accessing

- $E_{DRAM \rightarrow IMC}/4$ -bit: 40pJ
- Reuse: $N \times I \times J$ (10-20 lyrs)
- E_{MAC,4-b}: 50fJ

Weight Accessing

- E_{DRAM→IMC}/4-bit: 40pJ
- Reuse: *X*×*Y*
- E_{MAC,4-b}:50fJ

Low-SNR computation via algorithmic co-design

Emerging non-volatile memory (NVM)

• 2-terminal resistive memory provides better scaling at advanced nodes

CMOS Technology Node (nm)

https://www.spinmemory.com/technologies/mram-overview/

 ... BUT, leads to significantly reduced SNR

Globalfoundries, 22nm [D. Shum, VLSI'17]

Resistive RAM (RRAM)

Magnetic RAM (MRAM)

 3^{100} -- HRS 50 25 0 10^{-7} -- LRS 10^{-7} Read Current (A) 10^{-6}

12

TSMC 16nm [H. W. Pan, IEDM'15]

Chip-specific parameter training

Chip-generalized parameter training

High-SNR, charge-domain IMC

• Capacitors provide much better controllability & technology scalability \rightarrow 10's of thousands of IMC rows before SNR is capacitor limited

[H. Valavi, VLSI'18] [H. Valavi, JSSC'19]

Bin Batch Norm Neuron IA SRAM Array .4 mi 8x8 Neuron Tiles 4.3 mm **Neuron Transfer Function** Switching Threshold (6b) 6'd63 Error bars show **Activation Function** sigma over 512 (3x3x512) on-chip neurons

(measured)

+4608

Ô

Pre-Activation PAⁿ Value

Batch-normalized

6'd0-

-4608

	Moons, ISSCC'17	Bang, ISSCC'17	Ando, VLSI'17	Bankman, ISSCC'18	Valavi, VLSI'18
Technology	28nm	40nm	65nm	28nm	65nm
Area (mm ²)	1.87	7.1	12	6	17.6
Operating VDD	1	0.63-0.9	0.55-1	0.8/0.8 (0.6/0.5)	0.94/0.68/1.2
Bit precision	4-16b	6-32b	1b	1b	1b
on-chip Mem.	128kB	270kB	100kB	328kB	295kB
<u>Throughput</u> (GOPS)	400	108	1264	400 (60)	18,876
TOPS/W	10	0.384	6	532 (772)	866

- 10-layer CNN demos for MNIST/CIFAR-10/SVHN at energies of ٠ 0.8/3.55/3.55 µJ/image
- Equivalent performance to software implementation •

[H. Valavi, WLSI'18]

2.4Mb, 64-tile IMC

Programmable heterogeneous IMC processor

[H. Jia, arXiv:1811.04047] [H. Jia, HotChips'19]

Bit-Parallel/Bit-Serial (BP/BS) Multi-bit IMC

Development board

19

Software libraries

<u>1. Deep-learning Training Libraries</u> (Keras)	<u>2. Deep-learning Inference Libraries</u> (Python, MATLAB, C)
Standard Keras libs:	High-level network build (Python):
<pre>Dense(units,) Conv2D(filters, kernel_size,)</pre>	<pre>chip_mode = True outputs = QuantizedConv2D(inputs,</pre>
Custom libs:	<pre>layer_params)</pre>
(INT/CHIP guant.)	Function calls to chip (Python):
<pre>QuantizedDense(units, nb_input=4, nb_weight=4,</pre>	<pre>chip.load_config(num_tiles, nb_input=4,</pre>
•••	Embedded C:
<pre>QuantizedDense(units, nb_input=4, nb_weight=4,</pre>	<pre>chip_command = get_uart_word(); chip_config(); load_weights(); load_image(); image_filter(chip_command); read_dotprod_result(image_filter_command);</pre>

Demonstrations

Neural-Network Demonstrations			
	Network A	Network B	
	(4/4-b activations/weights)	(1/1-b activations/weights)	
Accuracy of chip	92.4%	89.3%	
(vs. ideal)	(vs. 92.7%)	(vs. 89.8%)	
Energy/10-way Class. ¹	105.2 µJ	5.31 µJ	
Throughput ¹	23 images/sec.	176 images/sec.	
Neural Network Topology	L1: 128 CONV3 – Batch norm L2: 128 CONV3 – POOL – Batch norm. L3: 256 CONV3 – Batch. norm L4: 256 CONV3 – POOL – Batch norm. L5: 256 CONV3 – Batch norm. L6: 256 CONV3 – POOL – Batch norm. L7-8: 1024 FC – Batch norm. L9: 10 FC – Batch norm.	L1: 128 CONV3 – Batch Norm. L2: 128 CONV3 – POOL – Batch Norm. L3: 256 CONV3 – Batch Norm. L4: 256 CONV3 – POOL – Batch Norm. L5: 256 CONV3 – Batch Norm. L6: 256 CONV3 – POOL – Batch Norm. L7-8: 1024 FC – Batch norm. L9: 10 FC – Batch norm.	

Conclusions & summary

Matrix-vector multiplies (MVMs) are a little different than other computations → high-dimensionality operands lead to data movement / memory accessing Bit cells make for dense, energy-efficient PE's in spatial array → but require analog operation to fit compute, and impose SNR tradeoff Must focus on SNR tradeoff to enable scaling (technology/platform levels) and architectural integration In-memory computing greatly affects the architectural tradeoffs, requiring new strategies for mapping applications

Acknowledgements: funding provided by ADI, DARPA, SRC/STARnet