
Instant Quantization of Neural Networks using
Monte Carlo Methods

Gonçalo Mordido∗†
Hasso Plattner Institute

Potsdam, Germany
goncalo.mordido@hpi.de

Matthijs Van Keirsbilck∗
NVIDIA

Berlin, Germany
matthijsv@nvidia.com

Alexander Keller
NVIDIA

Berlin, Germany
akeller@nvidia.com

Abstract

Low bit-width integer weights and activations are very important for efficient in-
ference, especially with respect to lower power consumption. We propose Monte
Carlo methods to quantize the weights and activations of pre-trained neural net-
works without any re-training. By performing importance sampling, we obtain
quantized low bit-width integer values from full-precision weights and activations.
The precision, sparsity, and complexity are easily configurable by the amount of
sampling performed. Our approach, called Monte Carlo Quantization (MCQ), is
linear in both time and space, with the resulting quantized, sparse networks show-
ing minimal accuracy loss when compared to the original full-precision networks.
Our method either outperforms or achieves competitive results on CIFAR-10 and
ImageNet when compared to previous methods that do require additional training.

1 Introduction

Developing novel ways of increasing the efficiency of neural networks is of great importance due to
their widespread usage in today’s variety of applications. Reducing the network’s footprint enables
local processing on personal devices without the need for cloud services. In addition, such methods
allow for reducing power consumption - also in data centers. Very compact models can be fully
stored and executed on-chip in specialized hardware like for example ASICs or FPGAs. This reduces
latency, increases inference speed, improves privacy concerns, and limits bandwidth cost.

The precision of the network weights and activations can be lowered while making use of sparsity,
allowing for efficient hardware implementations that reduce the cost or eliminate most floating point
operations. Quantization methods usually require re-training of the quantized model to achieve
competitive results. This leads to an additional cost and complexity. The proposed method, Monte
Carlo Quantization (MCQ), aims to avoid retraining by approximating the full-precision weight
and activation distributions using importance sampling. The resulting quantized networks achieve
accuracies close to the full-precision counterparts without the need for additional training. Most
importantly, the complexity of the resulting quantized networks is proportional to the number of
samples taken, with MCQ being linear in both time and space in the number of weights and activations.

First, we normalize the weights and activations of a given layer to treat them as probability distri-
butions. Then, we randomly sample from the corresponding cumulative distributions and count the
number of hits for every weight and activation. Finally, we approximate the weights and activations
by their integer count values, by performing a discrete approximation of the original continuous
values. Since the quality of this approximation relies entirely on random sampling, the accuracy of
the quantized model is directly dependant on the amount of sampling performed. Thus, accuracy may
be traded for higher sparsity and speed by adjusting the number of samples.
∗Equal contribution.
†Work done during a research internship at NVIDIA.

EMC2: 5th Edition Co-located with NIPS’19

2 Related Work

Low precision and sparsity allow for efficient hardware implementations that eliminate most floating
point operations and skip operations on zero values. Sparsification through iterative pruning is known
to work well [3], but comes with the increase of the training cost. Another approach is to modify the
training procedure so the network learns to deal with low-precision weights and/or activations.

BinaryConnect [1] proposes training networks with binary weights, while XNOR-Net [10] and
BNN [4] extend this binarization to both weights and activations. TWNs [6] proposes to quantize
using ternary weights instead to increase the model expressiveness. Similarly, TTQ [16] uses ternary
weights with a positive and negative scaling learned during training. LR-Net [11] uses both binary
and ternary weights by using stochastic parameterization while INQ [14] constrains weights to powers
of two and zero. FGQ [8] divides weights in groups and uses different scaling factors to minimize
the element-wise distance between full and low precision weights. Recently, [13] proposed outlier
channel splitting, which complements our approach by reducing the large bit-width required by bigger
weights and activations after quantization.

Similarly, quantization techniques can also be applied in the backward pass to quantize gradients and
increase training speed as well [15, 2, 1]. In particular, RQ [7] propose a differentiable quantization
procedure to allow for gradient-based optimization using discrete values and Wu et al. [12] recently
proposed to discretize weights, activations, gradients, and errors both at training and inference time.

3 Neural Networks and Monte Carlo Methods

Many state-of-the-art networks use ReLU as their activation function, which has interesting prop-
erties such as scale-invariance. This enables a scaling factor to be propagated through all network
layers without affecting the network’s original output. This principle can be used to normalize
network values, such as weights and activations, without affecting the network output. Given
weights wl−1,i,j connecting the i-th neuron in layer l − 1 to the j-th neuron in layer l, where
i ∈ [0, Nl−1 − 1] and j ∈ [0, Nl − 1], with Nl−1 and Nl being the number of neurons of layer l − 1
and l, respectively. Let al,j be the j-th activation in the l-th layer and f a positive number R+:

al,j = max

{
0,
∑Nl−1−1

i=0 wl−1,i,jal−1,i + bl,j

}
= f ·max

{
0,

∑Nl−1−1

i=0 wl−1,i,jal−1,i+bl,j
f

}
.

With f as the L1-Norm, these values can be treated as probabilities, enabling the simulation of discrete
probability densities by constructing a probability density function (PDF) and then sampling from the
corresponding cumulative density function (CDF). The number of references of a weight/activation
is then the quantized approximation of its continuous value. The following discussion is within the
weight quantization scope, however, the same process is applied for activations at inference time.

Without loss of generality, given n weights, assuming
∑n−1

k=0 |wk| = ‖w‖1 = 1 and defining a
partition of the unit interval by Pm :=

∑m
k=1 |wk|, we have the following partitions:

0 = P0 Pn−1 = 1P1 P2 Pn−2

|w1| |w2| |wn−1|

(1)

Then, givenN uniformly distributed samples xi ∈ [0, 1), we approximate the weight distribution with∑n−1
j=0 wjaj ≈ 1

N

∑N−1
i=0 sign(wji)︸ ︷︷ ︸

∈{−1,0,1}

×aji , where ji is uniquely determined by Pji−1 ≤ xi < Pji .

We use jittered equidistant (stratified) sampling, to ensure uniform distribution. Given a random

variable ξ ∈ [0, 1), we generate N samples xi ∈ [0, 1) such that xi =
i+ ξ

N
, where i ∈ {0, . . . , N −

1}. This also reduces the cost of the sampling process from O(NlogN) to O(N), as searching for
the value corresponding to a sample no longer requires a binary search. Sorting values before creating
the PDF groups smaller values together and, due to uniform sampling, they are sampled less often.
This produces higher sparsity and a better approximation of the larger values. Due to the additional
cost of O(NlogN), we only applied sorting to our CIFAR-10 experiments, but not to ImageNet.

2

4 Monte Carlo Quantization (MCQ)

Our approach builds on the aforementioned principles of network normalization and quantization
using Monte Carlo methods to quantize the weights and activations of pre-trained full-precision
neural networks. While we mainly focus on the procedure for weight quantization throughout this
Section, which is performed offline, activations are also quantized online in a similar manner during
inference time. Our method, called Monte Carlo Quantization (MCQ), may be summarized by the
following steps, which are executed layer by layer (also illustrated in Figure 1):

(1) Create a PDF for all Nl,w weights of layer l such that
∑Nl,w−1

i=0 |wl,i| = 1.
(2) Perform importance sampling on the weights based on their magnitude by sampling from

the corresponding CDF and counting the number of hits per weight.
(3) Replace each weight with its quantized integer value, i.e. its hit count while maintaining its

original sign, to obtain a low bit-width, integer weight representation.

0 1 2 3 4 5 6 7 8 9
Weight index

−1.0
−0.4

0.2
0.8
1.4
2.0

V
al

u
e

(a) full precision weights

0 1 2 3 4 5 6 7 8 9
Weight index

0.01
0.05

0.10
0.14
0.18

0.23

V
al

u
e

(b) PDF

0 1 2 3 4 5 6 7 8 9
Weight index

0.0

0.2

0.4

0.6

0.8

1.0

V
al

u
e

x0
x1
x2
x3
x4
x5
x6
x7
x8
x9

(c) sampling on CDF

0 1 2 3 4 5 6 7 8 9
Weight index

−1

00

11

2

V
al

u
e

(d) integer weights

Figure 1: Starting from full-precision weights (a), we create a PDF of the absolute values (b) and
sample with jittered equidistant samples from the corresponding CDF (c). The sampling method

produces quantized integer network weights based on the number of hits per weight (d). Note that
weights 1, 7, and 9 were not hit, creating sparsity in the quantized network.

Performing normalization neuron-wise, as in Section 3, may result in an inferior approximation when
the number of weights is small due to sampling errors, e.g. first convolutional layers. We propose
to normalize all neurons simultaneously in a layer-wise manner by using the 1-norm of all weights
of a layer l as the scaling factor f . Thus, each normalized weight can be seen as a probability with
respect to all connections between layer l − 1 and layer l, instead of a single neuron. This creates an
interesting connection between MC-sampled networks, random forests and conditional computation
networks [5]. An additional advantage is that samples can be redistributed from low-importance to
high-importance neurons, resulting in an increased level of sparsity and better global approximation.

As introduced in Section 3, we generate ternary samples (hit positive weight, hit negative weight,
or no hit), and count such hits during sampling. Note that even though the individual samples are
ternary, the final quantized values may not be since each value can be sampled multiple times. For
jittered sampling, we use one random offset per layer, with a number of samples N = K ·Nvalues,
where K ∈ R+ is a user-specified parameter to control the number of samples and Nvalues is the
number of weights or activations of a given layer. By varying K, computational cost can be traded off
for better approximation, with generally lower accuracy loss. In our experiments, K is set the same
for all network layers.

5 Experiments

The proposed method was evaluated on CIFAR-10 and ImageNet using a variety of models. The
quantization level is indicated by the average number of bits used to store weights and activations
on each layer, with 1 extra bit being used to represent the sign on weights. Comparison results are
presented in the accuracy difference, ∆, between the quantized and the baseline models reported in
each of the respective works to ensure a fair comparison. An extended version of this report with
additional experiments on NLP tasks is available in [9].

5.1 CIFAR-10

The baseline VGG-7 model was trained for 300 epochs with Adam, initial learning rate of 0.1
reduced by factor 10 at epochs 150 and 225, batch size of 128, and weight decay of 0.0005.Table 1

3

shows results of quantization with MCQ using K = 1.0. We observe that MCQ achieves minimal
accuracy loss, outperforming or being competitive with existing methods that do require additional
training. Figure 2 shows the effects of varying the sampling amount, i.e. changing K, on the accuracy,
percentage of used weights and activations, and number of bits for weights and activations. We
observe a rapid accuracy increase, with good accuracy even with high sparsity and low bit-width.

Table 1: Comparison results on CIFAR-10.
Quantizing only weights can outperform the

baseline. Quantizing both weights and activations
only slightly degrades accuracy. Quantizing the

first layer results in additional accuracy loss.

METHOD VGG-7

FULL PRECISION (32W-32A) 91.23
∆ MCQ (QUANTIZED W) -0.48 / +0.04a (6.1W-32A)
∆ MCQ (QUANTIZED A) -0.12a (32W-5.68A)
∆ MCQ (QUANTIZED W + A) -0.58 / -0.13a (6.1W-5.6A)

∆ TWNS (2W-32A) [6] -0.06
∆ BC (1W-32A) [1] +0.74
∆ BNN (1W-1A) [4] +0.49a

∆ BWN (1W-32A) [10] -0.36 / +0.76a

∆ XNOR-NET (1W-1A) [10] +0.47a

∆ RQ (8W-8A)) [7] +0.25
∆ LR-NET (2W-32A) [11] -0.11b

aNot quantizing the first layer.
bNot quantizing the last layer.

0.5 1.0 1.5 2.0
Number of samples per weight/activation

0.0

20.0

40.0

60.0

80.0

100.0

91.2

A
cc

u
ra

cy
(%

)

VGG-7 on CIFAR-10

Full precision model

Quantized model

Quantized model
(except first layer)

Weights

Activations

Figure 2: Effects of using different sampling
amounts. The quantized models start to reach
close to full-precision accuracy at ≈ 40% the

weights and ≈ 20% of the activations using ≈ 5
bits. Not quantizing the first layer allows for better
accuracy at higher sparsity and lower bit-width.

5.2 ImageNet

We further evaluated our approach on ImageNet using AlexNet, ResNet-18, and ResNet-50 with the
pre-trained weights provided by Pytorch’s model zoo. Table 2 shows MCQ’s results with K = 5.0
on the different models, quantizing both weights and activations. MCQ quantized models achieve
close to full-precision accuracy. Figure 3 shows the effects on the quantized model of varying K.

Table 2: Comparison results on ImageNet. When quantizing weights, accuracy drops less than 1% in
all tested models, whereas quantizing activations generally leads to a lower drop. Quantizing both

weights and activations leads to an additional accuracy loss of 0.6% in the worst case, i.e. ResNet-50.
We note that FGQ makes use of higher precision (8w-8a) on their first layer.

METHOD ALEXNET RESNET-18 RESNET-50

FULL PRECISION (32W-32A) 56.52 69.76 76.13
∆ MCQ (QUANTIZED W) -0.99 / -0.68a (8.00W-32A) -0.72 / -0.63a (8.00W-32A) -0.73 / -0.20a (8.28W-32A)
∆ MCQ (QUANTIZED A) +0.02a (32W-8.36A) -0.58a (32W-7.36A) -0.76a (32W-7.45A)
∆ MCQ (QUANTIZED W + A) -1.05 (7.88W-8.46A) / -0.75a (8.00W-7.2A) -1.13 (8.00W-7.35A) /-1.03a (8.00W-7.36A) -1.64 (8.26W-7.43A) / -1.21a (8.28W-7.45A)

∆ FGQ (2W-8A) [8] -7.79 - -4.29
∆ TTQ (2W-32A) [16] +0.3a,b -3.0a,b -
∆ TWNS (2W-32A) [6] -2.7a,b -4.3a,b -
∆ BWN (1W-32A) [10] +0.2 -8.5a,b -
∆ XNOR-NET (1W-1A) [10] -12.4 -18.1a,b -
∆ DOREFA (1W-32A) [15] -3.3a,b - -
∆ INQ (5W-32A) [14] -0.15 -0.71 -1.59
∆ RQ (8W-8A) [7] - +0.43 -
∆ LR-NET (2W-32A) [11] - -6.07a -

1 2 3 4 5
Number of samples per weight/activation

0.0

10.0

20.0

30.0

40.0

50.0

60.0
56.5

A
cc

u
ra

cy
(%

)

AlexNet on ImageNet

Full precision model

Quantized model
(except first layer)

Weights

Activations

1 2 3 4 5
Number of samples per weight/activation

0.0

20.0

40.0

60.0

ResNet-18 on ImageNet

Full precision model

Quantized model
(except first layer)

Weights

Activations

1 2 3 4 5
Number of samples per weight/activation

0.0

20.0

40.0

60.0

80.0
76.1

ResNet-50 on ImageNet

Full precision model

Quantized model
(except first layer)

Weights

Activations

Figure 3: Effects of using different sampling amounts. All quantized models reach close to baseline
accuracy at ≈ K = 3, with more samples required compared to CIFAR-10.

4

6 Discussion

The experimental results show low accuracy loss on CIFAR-10 and ImageNet for sparse, quantized
models compared to the full-precision counterparts. MCQ either outperforms or is competitive with
existing quantization methods that require additional training of the quantized network. A limitation
of MCQ is that it often requires a higher number of bits to represent the quantized values than
retraining methods. Nevertheless, this sampling-based approach mathematically leads to an arbitrarily
good approximation of the full-precision values and high accuracy without retraining. Moreover,
the trade-off between accuracy, sparsity, and bit-width can be controlled by adjusting the amount of
sampling, while the complexity of the quantized network can be controlled by varying the number of
samples. Ultimately, the use of sparse integer weights and activations throughout the network can
enable efficient hardware implementations.

References
[1] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural

networks with binary weights during propagations. In Advances in neural information processing systems,
pages 3123–3131, 2015.

[2] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with limited
numerical precision. In Francis Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages
1737–1746, Lille, France, 07–09 Jul 2015. PMLR.

[3] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[4] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural
networks. In Advances in neural information processing systems, pages 4107–4115, 2016.

[5] Yani Ioannou, Duncan P. Robertson, Darko Zikic, Peter Kontschieder, Jamie Shotton, Matthew Brown,
and Antonio Criminisi. Decision forests, convolutional networks and the models in-between. CoRR,
abs/1603.01250, 2016. URL http://arxiv.org/abs/1603.01250.

[6] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint arXiv:1605.04711, 2016.

[7] Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling. Relaxed
quantization for discretized neural networks. arXiv preprint arXiv:1810.01875, 2018.

[8] Naveen Mellempudi, Abhisek Kundu, Dheevatsa Mudigere, Dipankar Das, Bharat Kaul, and Pradeep
Dubey. Ternary neural networks with fine-grained quantization. arXiv preprint arXiv:1705.01462, 2017.

[9] Gonçalo Mordido, Matthijs Van Keirsbilck, and Alexander Keller. Instant quantization of neural networks
using monte carlo methods. arXiv preprint arXiv:1905.12253, 2019.

[10] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classifi-
cation using binary convolutional neural networks. In European Conference on Computer Vision, pages
525–542. Springer, 2016.

[11] Oran Shayer, Dan Levi, and Ethan Fetaya. Learning discrete weights using the local reparameterization
trick. arXiv preprint arXiv:1710.07739, 2017.

[12] Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and inference with integers in deep neural
networks. CoRR, abs/1802.04680, 2018. URL http://arxiv.org/abs/1802.04680.

[13] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network
quantization without retraining using outlier channel splitting. In International Conference on Machine
Learning, pages 7543–7552, 2019.

[14] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization:
Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044, 2017.

[15] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016.

[16] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016.

5

http://arxiv.org/abs/1603.01250
http://arxiv.org/abs/1802.04680

	Introduction
	Related Work
	Neural Networks and Monte Carlo Methods
	Monte Carlo Quantization (MCQ)
	Experiments
	CIFAR-10
	ImageNet

	Discussion

