
Discovering Low-Precision Networks Close to
Full-Precision Networks for Efficient Inference

Jeffrey L. McKinstry∗ Steven K. Esser Rathinakumar Appuswamy Deepika Bablani

John V. Arthur Izzet B. Yildiz Dharmendra S. Modha

IBM Research

Abstract

To realize the promise of ubiquitous embedded deep network inference, it is
essential to seek limits of energy and area efficiency. Low-precision networks
offer promise as energy and area scale down quadratically with precision. We
demonstrate 8- and 4-bit networks that meet or exceed the accuracy of their full-
precision versions on the ImageNet classification benchmark. We hypothesize that
gradient noise due to quantization during training increases with reduced precision,
and seek ways to overcome this. The number of iterations required by SGD to
achieve a given training error is related to the square of (a) the distance of the initial
solution from the final and (b) the maximum variance of the gradient estimates.
Accordingly, we reduce solution distance by starting with pretrained fp32 baseline
networks, and combat noise introduced by quantizing weights and activations
during training by training longer and reducing learning rates. Sensitivity analysis
indicates that these techniques, coupled with activation function range calibration,
are sufficient to discover low-precision networks close to fp32 precision baseline
networks. Our results provide evidence that 4-bits suffice for classification.

1 Introduction

To harness the power of deep networks in embedded and large-scale application domains requires
energy-efficient implementation, leading to great interest in low-precision networks suitable for
deployment with low-precision hardware accelerators. Consequently there have been a flurry of
methods for quantizing both the weights and activations of these networks (Jacob et al., 2017;
Courbariaux et al., 2015; Polino et al., 2018; Xu et al., 2018; Baskin et al., 2018; Mishra et al.,
2017; Choi et al., 2018). A common perception is that 8-bit networks offer the promise of decreased
computational complexity with little loss in accuracy, without need to retrain. However, the published
accuracies are typically lower for quantized networks than for the corresponding full-precision net
(Migacz, 2017). Even training 8-bit networks from scratch fails to close this gap (Jacob et al., 2017)
(See Table 1). At 4 bits, for ImageNet, only one method has been able to match the accuracy of
the corresponding full-precision network when quantizing both weights and activations (Zhuang
et al., 2018). The complexity and ad-hoc nature of prior methods motivates the search for a simpler
technique that consistently matches full-precision baseline networks.

Guided by theoretical convergence bounds for stochastic gradient descent (SGD), we discover
that Fine-tuning – training pre-trained high-precision networks for low-precision inference – After
Quantization – proper range calibration of weights and activations – can discover 8- and 4-bit integer
networks. We evaluate the proposed technique on the ImageNet benchmark on a representative set

∗Correspondance to jlmckins@us.ibm.com

EMC2: 5th Edition Co-located with NeurIPS’19



Table 1: FAQ exceeds or matches fp32 network accuracy on Imagenet for 8 and 4 bits, outper-
forming all previous approaches in all but one instance. Baselines are popular architectures from
the PyTorch model zoo. Other results reported in literature shown for comparison, with methods
exceeding or matching their top-1 baseline in bold. Precision in bits, w= weight, a= activation.

Network Method Precision (w,a) Accuracy Accuracy
(% top-1) (% top-5)

ResNet-18 baseline 32,32 69.76 89.08
ResNet-18 Apprentice 4,8 70.40 -
ResNet-18 FAQ (This paper) 8,8 70.02 89.32
ResNet-18 FAQ (This paper) 4,4 69.78±0.04 89.11±0.03
ResNet-18 Joint Training 4,4 69.3 -
ResNet-18 UNIQ 4,8 67.02 -
ResNet-18 Distillation 4,32 64.20 -
ResNet-34 baseline 32,32 73.30 91.42
ResNet-34 FAQ (This paper) 8,8 73.71 91.63
ResNet-34 FAQ (This paper) 4,4 73.31 91.32
ResNet-34 UNIQ 4,32 73.1 -
ResNet-34 Apprentice 4,8 73.1 -
ResNet-34 UNIQ 4,8 71.09 -
ResNet-50 baseline 32,32 76.15 92.87
ResNet-50 FAQ (This paper) 8,8 76.52 93.09
ResNet-50 FAQ (This paper) 4,4 76.25 93.00
ResNet-50 EL-Net 4,4 75.9 92.4
ResNet-50 IOA 8,8 74.9 -
ResNet-50 Apprentice 4,8 74.7 -
ResNet-50 UNIQ 4,8 73.37 -

ResNet-152 baseline 32,32 78.31 94.06
ResNet-152 FAQ (This paper) 8,8 78.54 94.07
ResNet-152 FAQ (This paper) 4,4 78.35 94.11
Inception-v3 baseline 32,32 77.45 93.56
Inception-v3 FAQ (This paper) 8,8 77.60 93.59
Inception-v3 FAQ (This paper) 4,4 77.33 93.59
Inception-v3 IOA 8,8 74.2 92.2
Densenet-161 baseline 32,32 77.65 93.80
Densenet-161 FAQ (This paper) 4,4 77.90 93.83
Densenet-161 FAQ (This paper) 8,8 77.84 93.91

VGG-16bn baseline 32,32 73.36 91.50
VGG-16bn FAQ (This paper) 4,4 73.87 91.67
VGG-16bn FAQ (This paper) 8,8 73.66 91.56

of networks (Table 1) and demonstrate 8-bit scores exceeding fp32 scores after just one epoch of
fine-tuning. We also present evidence of 4 bit, fully integer networks, that match the accuracy of the
original fp32 networks, setting the new state-of-the-art.

Our goal is to quantize existing networks to 8 and 4 bits for both weights and activations, without
increasing the computational complexity of the network to compensate, e.g. with modifications such
as feature expansion, while achieving accuracies that at least match the original network. We aim to
find a way to train low-precision networks to obtain the best possible score subject to capacity limits.

We hypothesize that noise introduced by quantizing weights and activations during training is the
crux of the problem and is a second source of noise similar to gradient noise inherent to SGD (Polino
et al. (2018)). The problem is then to find ways to overcome this noise. SGD requires 2

k ≤ (σ2 + L ∗ ‖x0 − x∗‖22)2/ε2 (1)

iterations to find a 2ε-approximate optimal value, where σ2 is the gradient noise level, L is related
to the curvature of the convex function, x0 and x∗ are the initial and optimal network parameters,

2 This assumes a convex loss function, a simpler case.

2



respectively, and ε is the error tolerance (Meka, 2017). This suggests two ways to minimize final
error. First, start closer to the solution, i.e. minimize x0 − x∗. We therefore start with pretrained
models rather than training from scratch (Zhou et al., 2017; Baskin et al., 2018). Second, minimize
σ2. To do this, we combine well-known techniques to combat noise: 1) larger batches which reduce
gradient noise proportional to the square root of batch size (Goodfellow et al., 2016), and 2) learning
rate annealing to lower learning rates (10−6), effectively averaging over more batches (batch size
increases and learning rate decreases are known to behave similarly (Smith et al., 2017)). Additionally,
in the case of 4-bit precision, we fine-tune longer to achieve better accuracy, according to equation 1.
Finally, we use the initial pretrained network to determine the proper ranges for quantizing both the
weights and activations. We refer to this technique as Fine-tuning after quantization, or FAQ.

2 Background

There are a variety of methods for producing low-precision networks. These include allowing
non-uniform quantization of weights and activations (Miyashita et al., 2016; Zhou et al., 2017),
and stochastic quantization (Polino et al., 2018; Courbariaux et al., 2015). Approaches to training
include distillation (Polino et al., 2018), layer-wise quantization and retraining (Xu et al., 2018),
introducing noise during training (Baskin et al., 2018), increasing features (Mishra et al., 2017),
learning quantization-specific parameters using backpropagation (Choi et al., 2018), and fine-tuning
(Baskin et al., 2018; Zhuang et al., 2018), among others.

We focus on training networks with weights and activations constrained to be either 4 bit, or 8-bit fixed-
point integers, and restrict all other scalar multiplicative constants (for example, batch-normalization)
in the network to be 8-bit integers and additive constants (for example, bias values) to be 32-bit
integers. Compared to previous work, our approach offers a major advantage in the 8-bit space, by
requiring only a single epoch of post quantization training, and in the 4-bit space by matching baseline
scores with a simpler approach, exceeding published results on several state-of-the-art networks.

3 Low-precision Fine-tuning Methods

We start with pretrained, high-precision networks from the PyTorch model zoo, quantize, and
then fine-tune for a variable number of epochs depending on precision. The quantizer we use
is parametrized by the precision (in number of bits) b, and the location of the least significant-
bit relative to the radix l, denoted by Qb,l. A calibration phase during initialization is used to
determine a unique l for each layer of activations, which remains fixed subsequently throughout
fine-tuning. Similarly, each layer’s weights as well as other parameters are assigned a unique l
and this quantity is determined during each training iteration. The procedures for determining l for
activations and other parameters are described in the following subsections. A given scalar x is
quantized to a fixed-point integer x̂ = Qb,l(x) = min(bx× 2−le, 2b − 1)× 2l for unsigned values,
and x̂ = max(min(bx× 2−le, 2b−1 − 1),−2b−1 + 1))× 2l for signed values.

All network weights and activations are quantized to 4 or 8 bits except first and last layer weights and
the input to last layer, which are kept at 8 bit as is common in literature. The output of the last fully
connected layer is full precision (Courbariaux et al. (2015); Esser et al. (2016)).

Given a weight tensor w, a fixed-point version is used for inference and gradient calculation, obtained
by applying Qb,l element-wise. The quantization parameter l for a weight tensor is updated during
every iteration and computed as follows: We first determine a desired quantization step-size ∆ by
first clipping the weight tensor at a constant multiple3 of its numerically estimated standard-deviation,
and then dividing this range into equally-sized bins. Finally, the required constant l is calculated as
l = dlog2(∆)e. All other parameters, including those used in batch-normalization, use l = −b/2.

Networks are initialized from available pretrained models. Next, the quantization parameter l for each
layer of activation is calibrated using the following procedure: Following Jacob et al. (2017), we run
several (5) training data batches through the unquantized network to determine the maximum range
for uniform quantization. For each layer, ymax is the maximum across all batches of the 99.99th
percentile of the batch of activation tensor of that layer, rounded up to the next even power of two.
This percentile level was found to give the best initial validation score for 8-bit, while 99.9 was

3The constant, in general, depends on the precision. We used a constant of 4.12 for all our 4-bit experiments.

3



best for 4-bit ReLUs. The estimated ymax determines the quantization parameter l for that tensor.
For ReLU layers, the clipped tensor in the range [0, ymax] is then quantized using Qb,l. Activation
function parameters for training are kept fixed during fine-tuning.

To train a quantized network we use the typical procedure of keeping an fp32 copy of the weights
which are updated with the gradients, and quantize weights and activations in the forward pass
(Courbariaux et al., 2015; Esser et al., 2016). We also use the straight through estimator (Bengio
et al., 2013) to pass the gradient through the quantization operator. For 8-bit networks, we need only
a single additional epoch of training, with a learning rate of 10−4. For 4-bit networks we trained
for 110 epochs using exponential learning rate decay starting from the initial rate of 0.0015 (slightly
higher than the final learning rate used to train the pretrained net) to a final value of 10−6 4. The
batch size used was 256. SGD with momentum was used for optimization.

4 Experiments

FAQ trained 8-bit networks outperform all comparable quantization methods in all but one instance
and exceed fp32 network accuracy for all networks explored. Following quantization, the accuracy
was very close to the fp32 networks (data not shown) with one exception (Inception-v3). Hence, they
did not require extensive fine-tuning. FAQ trained 4-bit network accuracy exceeds all comparable
quantization methods, surpassing the next closest approach by nearly 0.5% for ResNet-18 (Jung
et al., 2018), and at least matched fp32 accuracy. In contrast to 8-bit, accuracy dropped precipitously
following quantization, requiring significant fine-tuning to match pretrained networks.

4-bit network accuracy is sensitive to several hyperparameters. Table 2 demonstrates sensitivity
experiments. Our findings from these experiments are summarized below.

• For the 4-bit ResNet-18, longer fine-tuning improved accuracy, potentially by averaging out
gradient noise introduced by discretization (Polino et al., 2018).

• Initializing networks with a discretized pretrained network followed by fine-tuning improved
accuracy compared with training a quantized network from random initialization for the
same duration, suggesting proximity to a full-precision network enhances low-precision
fine-tuning.

• Reducing noise with larger batch size improves accuracy. The results in Table 2 are consistent
with the idea that gradient noise limits low-precision training and increasing batch size helps
counter this noise.

• Reducing weight decay improves accuracy for 4-bit ResNet-18, as it may lack sufficient
capacity to compensate for low-precision weights and activations with the same weight
decay as the full precision network. In contrast, for the larger 4-bit networks, best results
were obtained with weight decay 10−4.

5 Discussion

We show that low-precision quantization followed by finetuning, when properly compensating for
noise, is sufficient to achieve state of the art performance for networks employing 4- and 8-bit weights
and activations. This work demonstrates a straightforward, scalable approach for quantization, a
critical step towards harnessing the energy-efficiency of low-precision hardware. The results herein
provide evidence that 4-bits suffice for classification.

References
Chaim Baskin, Eli Schwartz, Evgenii Zheltonozhskii, Natan Liss, Raja Giryes, Alexander M. Bronstein, and Avi

Mendelson. UNIQ: uniform noise injection for the quantization of neural networks. CoRR, abs/1804.10969,
2018. URL http://arxiv.org/abs/1804.10969.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

4For ResNet-50, ResNet-152, and Inception-v3, a step learning rate schedule was used with an initial learning
rate of 0.02, reduced by a factor of 0.1 after 30, 60, and 90 epochs.

4

http://arxiv.org/abs/1804.10969


Table 2: 4-bit ResNet-18 sensitivity experiments Standard parameters on row 1. Subsequent rows
show scores for one changed parameter in bold. * to keep number of weight updates approximately
same, number of epochs was increased as larger batches result in fewer updates per epoch.

Epochs Pre- Batch size Learning Weight Activation Accuracy Change
trained rate decay calibration (% top-1)

schedule
110 Yes 256 exp. 0.00005 Yes 69.82 -
60 Yes 400 exp. 0.00005 Yes 69.40 -0.22

110 No 256 exp. 0.00005 Yes 69.24 -0.58
165* Yes 256-2048 exp. 0.00005 Yes 69.96 +0.14
110 Yes 256 step 0.00005 Yes 69.90 +0.08
110 Yes 256 exp. 0.0001 Yes 69.59 -0.23
110 Yes 256 exp. 0.00005 No 69.19 -0.63

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and
Kailash Gopalakrishnan. PACT: parameterized clipping activation for quantized neural networks. CoRR,
abs/1805.06085, 2018. URL http://arxiv.org/abs/1805.06085.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural networks
with binary weights during propagations. In Advances in neural information processing systems, pp. 3123–
3131, 2015.

SK Esser, PA Merolla, JV Arthur, AS Cassidy, R Appuswamy, A Andreopoulos, DJ Berg, JL McKinstry,
T Melano, DR Barch, et al. Convolutional networks for fast, energy-efficient neuromorphic computing. 2016.
Preprint on ArXiv. http://arxiv. org/abs/1603.08270. Accessed, 27, 2016.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only
inference. arXiv preprint arXiv:1712.05877, 2017.

Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Youngjun Kwak, Jae-Joon Han, and Changkyu
Choi. Joint training of low-precision neural network with quantization interval parameters. arXiv preprint
arXiv:1808.05779, 2018.

Raghu Meka. Cs289ml: Notes on convergence of gradient descent.
https://raghumeka.github.io/CS289ML/gdnotes.pdf, 2017.

Szymon Migacz. Nvidia 8-bit inference with tensorrt. GPU Technology Conference, 2017.

Asit K. Mishra, Eriko Nurvitadhi, Jeffrey J. Cook, and Debbie Marr. WRPN: wide reduced-precision networks.
CoRR, abs/1709.01134, 2017. URL http://arxiv.org/abs/1709.01134.

Daisuke Miyashita, Edward H. Lee, and Boris Murmann. Convolutional neural networks using logarithmic data
representation. CoRR, abs/1603.01025, 2016. URL http://arxiv.org/abs/1603.01025.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quantization. CoRR,
abs/1802.05668, 2018. URL http://arxiv.org/abs/1802.05668.

Samuel L Smith, Pieter-Jan Kindermans, and Quoc V Le. Don’t decay the learning rate, increase the batch size.
arXiv preprint arXiv:1711.00489, 2017.

Yuhui Xu, Yongzhuang Wang, Aojun Zhou, Weiyao Lin, and Hongkai Xiong. Deep neural network compression
with single and multiple level quantization. CoRR, abs/1803.03289, 2018. URL http://arxiv.org/
abs/1803.03289.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization: Towards
lossless cnns with low-precision weights. CoRR, abs/1702.03044, 2017. URL http://arxiv.org/
abs/1702.03044.

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Towards effective low-bitwidth
convolutional neural networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

5

http://arxiv.org/abs/1805.06085
http://arxiv.org/abs/1709.01134
http://arxiv.org/abs/1603.01025
http://arxiv.org/abs/1802.05668
http://arxiv.org/abs/1803.03289
http://arxiv.org/abs/1803.03289
http://arxiv.org/abs/1702.03044
http://arxiv.org/abs/1702.03044

	Introduction
	Background
	Low-precision Fine-tuning Methods
	Experiments
	Discussion

