# Putting the "Machine" Back in Machine Learning: The Case for Hardware-ML Model Co-design

#### Diana Marculescu

The University of Texas at Austin and Carnegie Mellon University dianam@{utexas.edu, cmu.edu}
enyac.org

## Hey Siri...



What's 100 divided by 2?

What's my name?

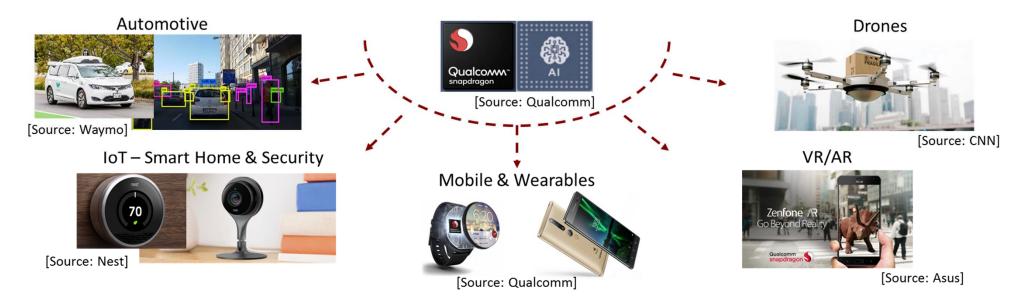
What is Apple?



**Off-network** 

#### Machine Learning Applications Push Hardware to its Limits

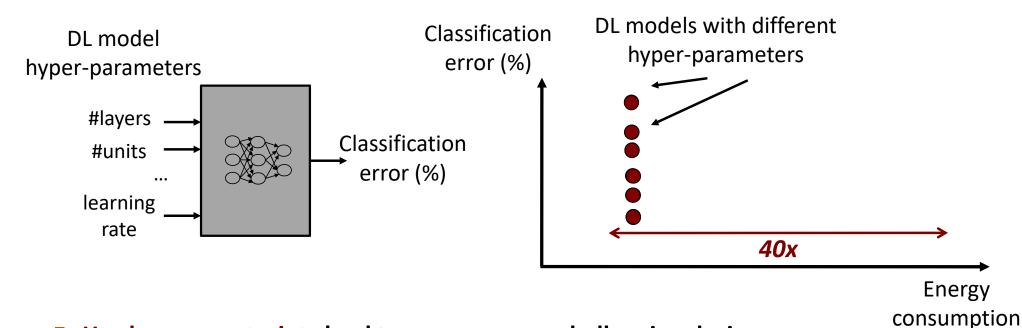
Deep Learning (DL) models are now used in every modern computing system



- Hardware constraints are a key limiting factor for DL on mobile platforms
  - ◆ Energy constraints: object detection drains smartphone battery in 1 hour! [Yang et al., CVPR'17]
  - ◆ Edge-cloud **communication** constraints
  - ◆ On-device **inference** (**response**) time constraints

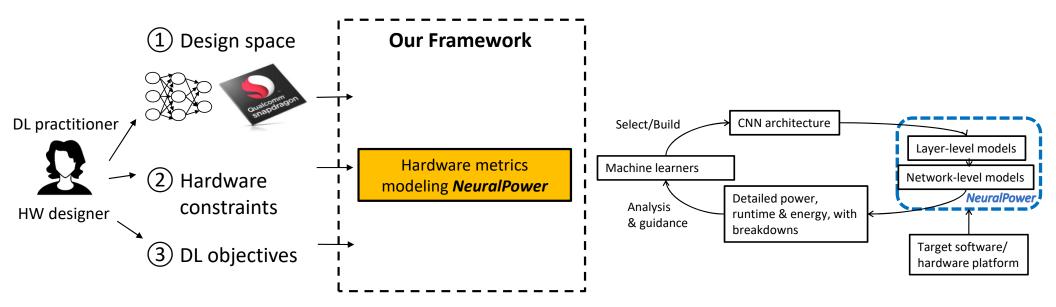
#### Challenge: Designing DL Models under Hardware Constraints is Hard

Hyper-parameter optimization: Find DL model with optimal learning performance



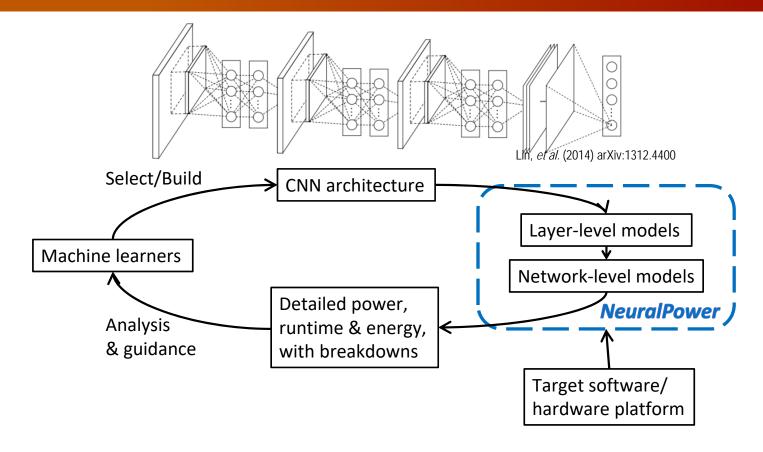
- Hardware constraints lead to an ever more challenging design space
  - ◆ 12k models, 800 GPUs, 28 days ≈ 62 GPU-years! [Zoph et al., arXiv:1707.07012, 2017]

#### We Can't Optimize What We Can't Measure: DL-HW Models



90% accurate models for power, energy, and latency for DL running on HW platforms; can be used as an objective or constraint

## **NeuralPower:** A Layer-wise Predictive Framework

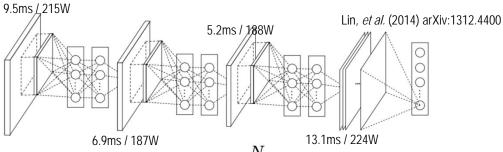


[E. Cai, D. Stamoulis, D.-C. Juan, D. Marculescu, ACML'17]

#### **NeuralPower: Network-Level Models**

Energy:

$$\hat{E}_{total} = \hat{T}_{total} \cdot \hat{P}_{avg} = \sum_{n=1}^{N} \hat{P}_n \cdot \hat{T}_n$$



Runtime:

$$\hat{T}_{total} = \sum_{n=1}^{N} \hat{T}_n$$

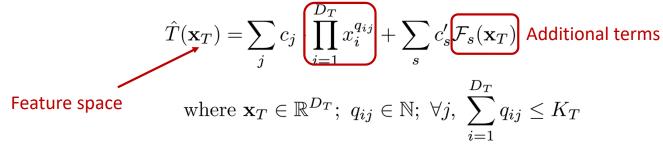
Power:

$$\hat{P}_{avg} = \frac{\sum_{n=1}^{N} \hat{P}_n \cdot \hat{T}_n}{\sum_{n=1}^{N} \hat{T}_n}$$

## NeuralPower: Layer-Level Models

Runtime model:

Degree K<sub>T</sub> polynomial terms



e.g., Feature space for Conv. = {kernel size, stride size, padding size, #filters, ...}

Power model:

Degree K<sub>P</sub> polynomial terms

$$\hat{P}(\mathbf{x}_P) = \sum_j z_j \left( \prod_{i=1}^{D_P} x_i^{m_{ij}} + \sum_k z_k' \mathcal{F}_k(\mathbf{x}_P) \right) \text{ Additional terms}$$
 Feature space 
$$\text{where } \mathbf{x}_P \in \mathbb{R}^{D_P}; \ m_{ij} \in \mathbb{N}; \ \forall j, \ \sum_{i=1}^{D_P} m_{ij} \leq K_P$$

e.g., Feature space for Conv. = {kernel size, log(kernel size), stride size, log(stride size), ...}

#### **Layer-level Results**

#### Runtime:

♦ Baseline: Paleo [Qi et al., ICLR'17]: uses analytical methods to calculate the response time for CNNs

| Layer type      | 1          | VeuralPou | Paleo Qi et al. (2016) |        |           |
|-----------------|------------|-----------|------------------------|--------|-----------|
| 2ay or type     | Model size | RMSPE     | RMSE (ms)              | RMSPE  | RMSE (ms) |
| Convolutional   | 60         | 39.97%    | 1.019                  | 58.29% | 4.304     |
| Fully-connected | 17         | 41.92%    | 0.7474                 | 73.76% | 0.8265    |
| Pooling         | 31         | 11.41%    | 0.0686                 | 79.91% | 1.763     |

#### Power:

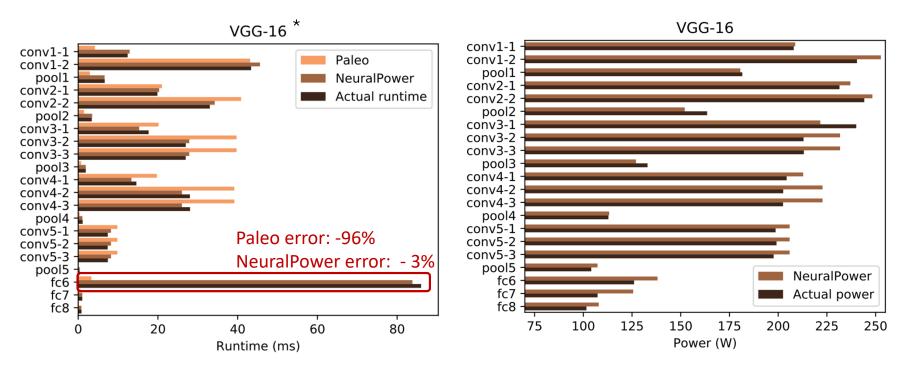
◆ No prior work with respect to power prediction

| Layer type      | Neural Power |       |          |  |  |  |
|-----------------|--------------|-------|----------|--|--|--|
| Zayer type      | Model size   | RMSPE | RMSE (W) |  |  |  |
| Convolutional   | 75           | 7.35% | 10.9172  |  |  |  |
| Fully-connected | 15           | 9.00% | 10.5868  |  |  |  |
| Pooling         | 30           | 6.16% | 6.8618   |  |  |  |

[E. Cai, D. Stamoulis, D.-C. Juan, D. Marculescu, ACML'17]

#### **Network-level Results: Breakdown**

#### Runtime Power



<sup>\*</sup> Comparison against prior art: "[H.Qi, E.R. Sparks, and A. Talwalkar., ICLR'17]

[E. Cai, D. Stamoulis, D.-C. Juan, D. Marculescu, ACML'17]

#### **Network-level Results: Runtime & Power**

#### Runtime

| CNN           | Qi et al. (2016) | NeuralPower            | Actual runtime   |
|---------------|------------------|------------------------|------------------|
| name          | Paleo (ms)       | $\hat{T}_{total}$ (ms) | $T_{total}$ (ms) |
| VGG-16        | 345.83           | 373.82                 | 368.42           |
| AlexNet       | 33.16            | 43.41                  | 39.02            |
| NIN           | 45.68            | 62.62                  | 50.66            |
| Overfeat      | 114.71           | 195.21                 | 197.99           |
| CIFAR10-6conv | 28.75            | 51.13                  | 50.09            |

#### Power

$$\hat{P}_{avg} = \frac{\sum_{n=1}^{N} \hat{P}_{n} \cdot \hat{T}_{n}}{\sum_{n=1}^{N} \hat{T}_{n}}$$

| CNN           | Neural Power          | Actual power  |
|---------------|-----------------------|---------------|
| name          | $\hat{P}_{total}$ (W) | $P_{avg}$ (W) |
| VGG-16        | 206.88                | 204.80        |
| AlexNet       | 174.25                | 194.62        |
| NIN           | 179.98                | 226.34        |
| Overfeat      | 172.20                | 172.30        |
| CIFAR10-6conv | 165.33                | 188.34        |

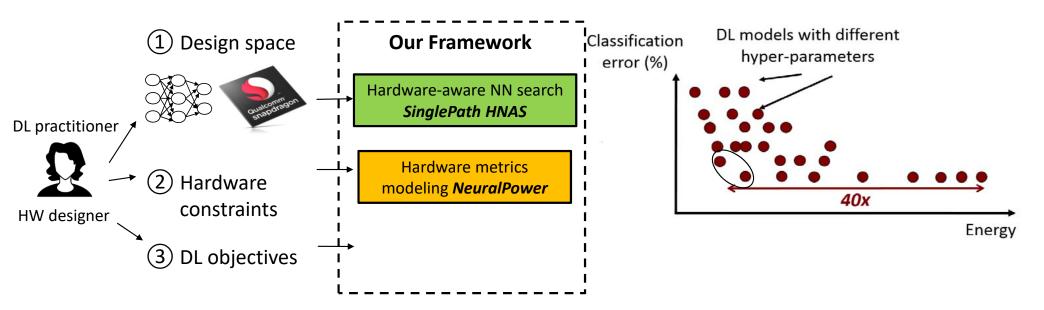
## **Network-level Results: Energy**

#### Energy

$$\hat{E}_{total} = \hat{T}_{total} \cdot \hat{P}_{avg} = \sum_{n=1}^{N} \hat{P}_n \cdot \hat{T}_n$$

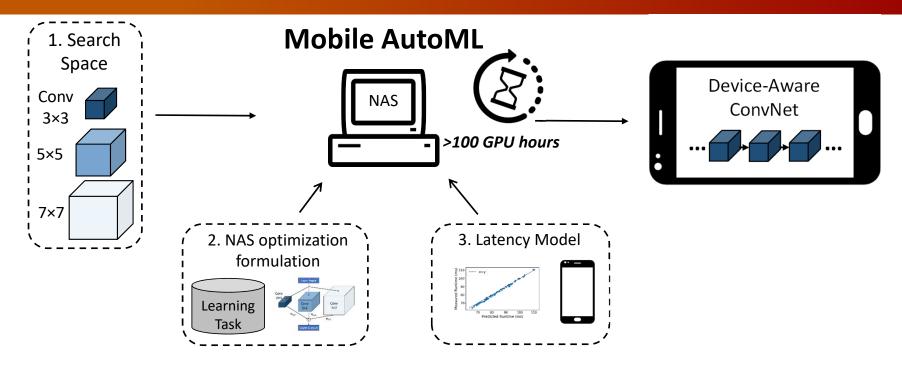
| CNN                | NeuralPower           | Actual energy   |
|--------------------|-----------------------|-----------------|
| name               | $\hat{E}_{total}$ (J) | $E_{total}$ (J) |
| VGG-16             | 77.312                | 75.452          |
| $\mathbf{AlexNet}$ | 7.565                 | 7.594           |
| NIN                | 11.269                | 11.465          |
| Overfeat           | 33.616                | 34.113          |
| CIFAR10-6conv      | 8.938                 | 9.433           |

#### If We Can Measure, Can We Optimize It Efficiently?



 Neural architecture search can bring 5-10x improvement in energy or latency with minimal loss in accuracy; or can satisfy real-time constraints for inference

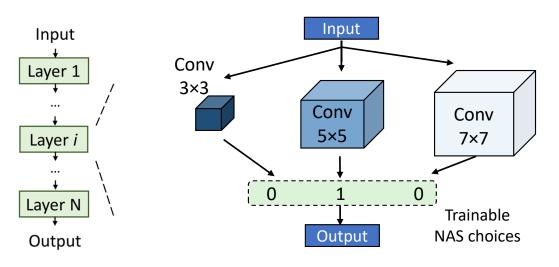
## Device-aware ConvNet design: Key questions for practitioners



- Can we automatically design ConvNets with highest image classification accuracy under smartphone latency constraints?
- Can we reduce the search cost of Neural Architecture Search (NAS) from days down to a few hours?

#### **Background: Multi-Path Differentiable NAS**

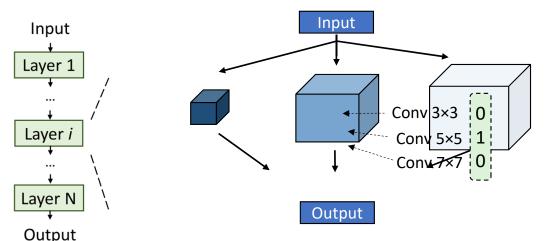
Existing Multi-Path Differentiable NAS approaches [1,2,3]



- Supernet: each candidate operation as a separate path per layer
- NAS problem viewed as an expensive path-level selection
- Number of parameters per layer: all weights across all paths
- Multi-path Differentiable NAS interchangeably updates NAS choices and model weights
- The combinatorially large design space leads to high search cost time (>100 GPU-hours)

#### Proposed Single-Path NAS: Key contributions

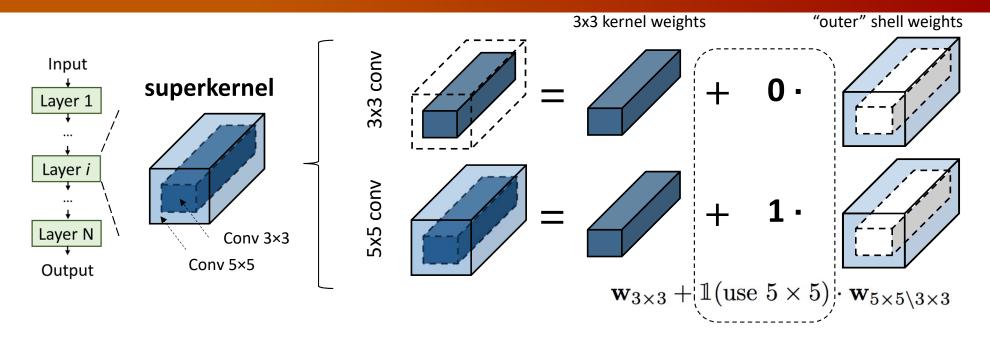
Proposed methodology: incorporate all candidate ops over one single-path



- Supernet: all candidate operations in a single superkernel per layer
- NAS problem viewed as an efficient kernel-level selection
- Number of parameters per layer: weights of largest candidate op only
- Novel differentiable "encoding" of NAS design choices over single-path design space
- State-of-the-art AutoML: up to 5,000 × reduced search cost, ImageNet top1 75.62%

[D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu, D. Marculescu, ECML-PKDD'19]

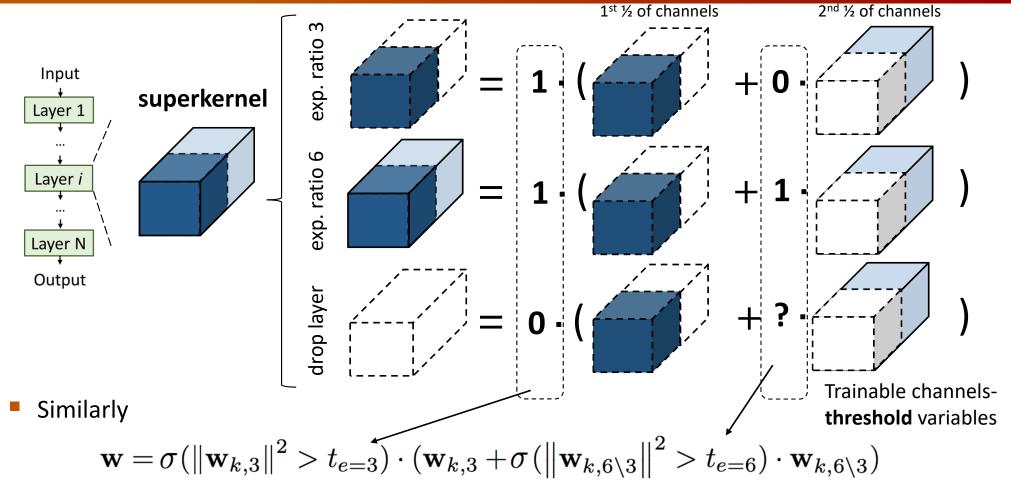
#### Making kernel architectural decisions differentiable



NAS kernel choice is formulated via a differentiable decision function [1,2]

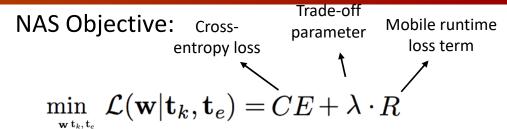
$$\mathbf{w}_k = \mathbf{w}_{3\times3} + \sigma(\left\|\mathbf{w}_{5\times5\backslash3\times3}\right\|^2 > t_k) \cdot \mathbf{w}_{5\times5\backslash3\times3}$$
 Group lasso Trainable kernel- [1] Ding et al., PACT, 2018 Threshold variable

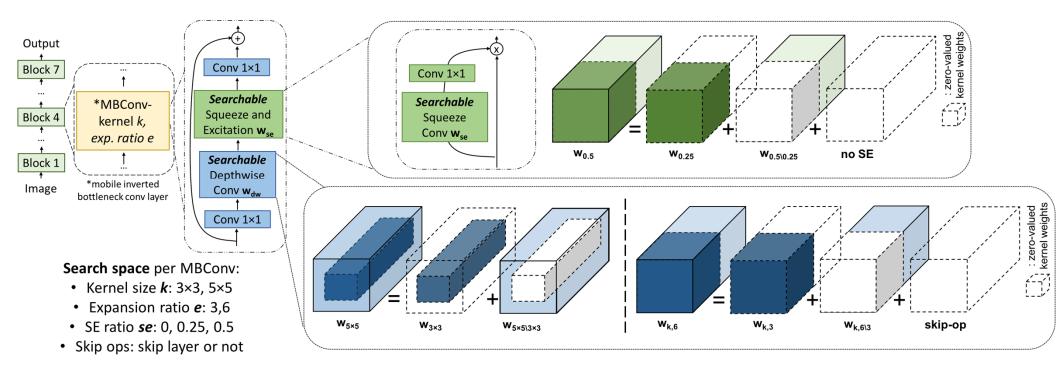
#### Making channel architectural decisions differentiable



# Single-Path NAS: as costly as training a compact model

- Flexibly extendable to various NAS choices
- MobileNet space: [Tan et al.,'19]
   model as large as largest candidate op

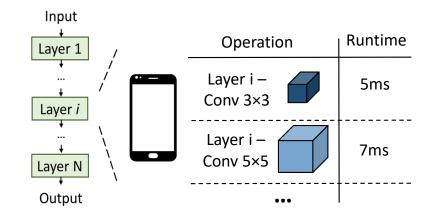


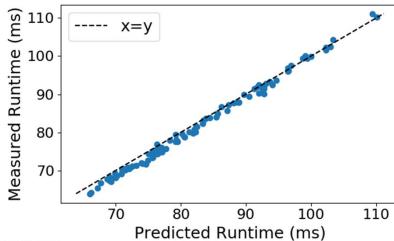


#### Hardware-Aware NAS: Making Runtime Term Differentiable

- Total ConvNet runtime is the sum of per-layer runtimes [1,2]
- We profile on *Pixel 1 phone*
- Populate Look-up-Table model per layer i
- Express per-layer runtime as a function of the Single-Path NAS architectural choices

$$R_e^i = R_{3\times3}^i + \sigma(\text{use } 5\times5) \cdot (R_{5\times5}^i - R_{3\times3}^i)$$



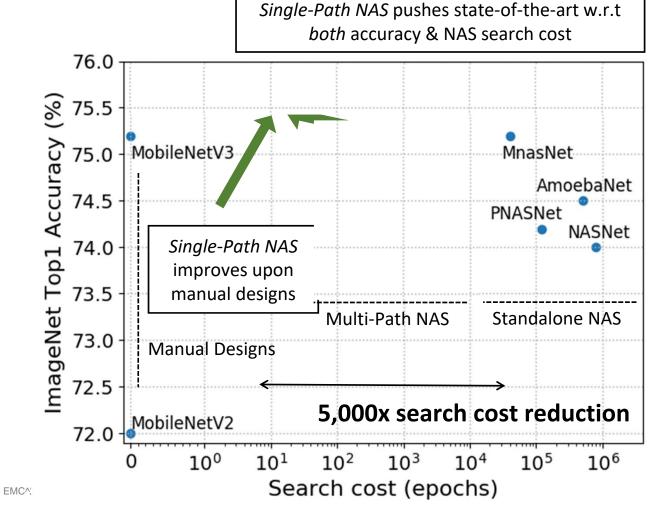


[1] Cai et al. ProxylessNAS, ICLR'19, [2] Wu et al. FBNet, CVPR'19

## Single-Path NAS achieves state-of-the-art AutoML results

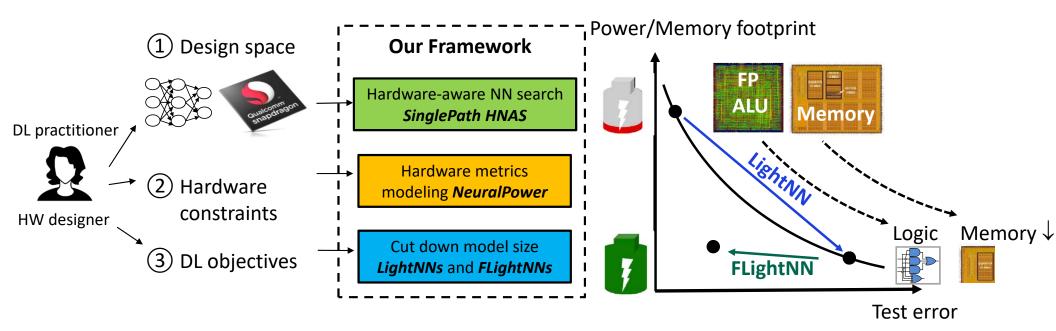
- Single-Path ConvNet: 75.62% top-1 ImageNet accuracy (~80ms runtime)
- Single-Path NAS: the reduced NAS search cost by up to 5,000 x

[1] Tan et al. MnasNet, CVPR'19[2] Wu et al. FBNet, CVPR'19[3] Cai et al. ProxylessNAS, ICLR'19



Diana Marculescu © 2019

#### Can We Do Better?

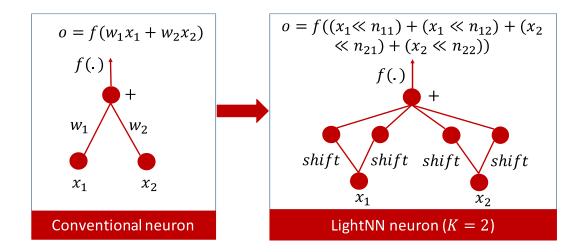


Up to 100x lower energy, 5x less area with minimal loss in accuracy

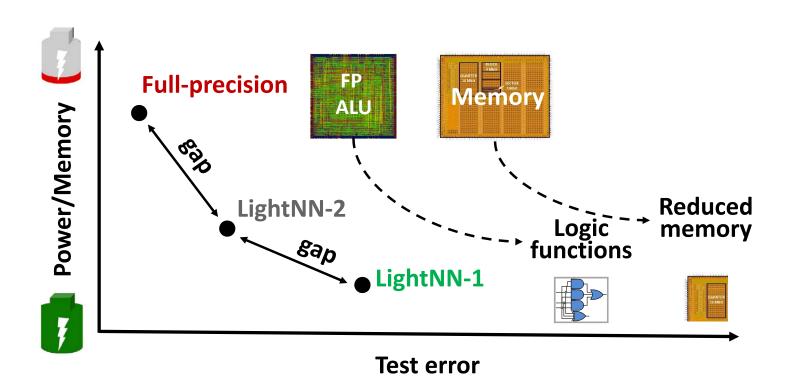
## LightNNs: Lightweight quantized DNN model

#### Replace multipliers with limited shift and add operators

- $w \cdot x = sign(w)(2^{n_1} + 2^{n_2} + \dots + 2^{n_K}) \cdot x = sign(w)(x \ll n_1 + \dots + x \ll n_K)$
- lack We constrain K to be one or two
- lacktriangle When K=1, the equivalent multiplier is just a shift
- lacktriangle When K=2, the equivalent multiplier is two shifts and one add (shown below)

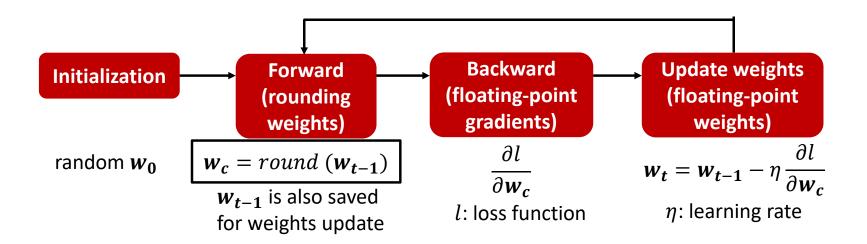


# LightNNs: Lightweight quantized DNN model



#### **Training LightNNs**

Backpropagation algorithm is modified to improve the accuracy of trained LightNNs



[R. Ding, D. Liu, S. Blanton, D. Marculescu, GLSVLSI'17, ACM TRETS'19]

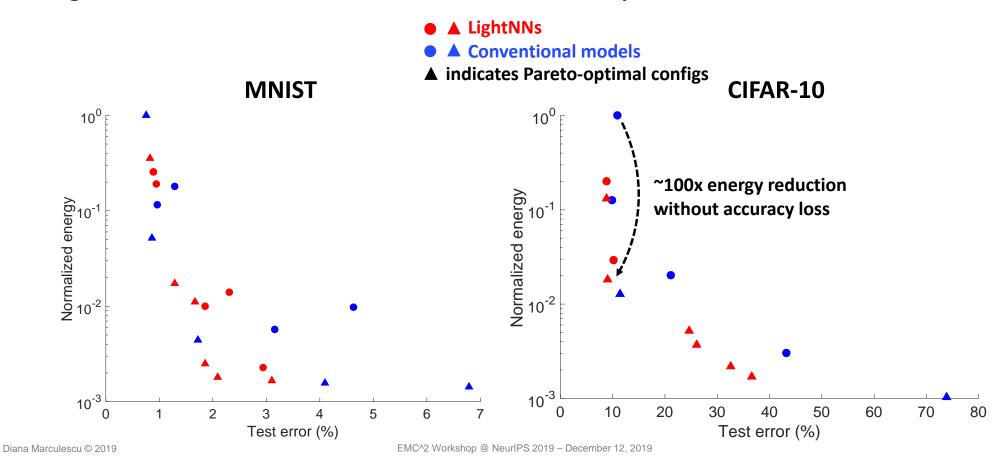
#### **Test error results**

#### In most cases, from good to bad: Conventional > LightNNs > BNNs

|            |               |               | MNIST  | CI         | CIFAR-10 |            |  |
|------------|---------------|---------------|--------|------------|----------|------------|--|
|            |               | 1-hidden      | 2-conv | 3-hidden   | 3-conv   | 6-conv     |  |
| Number     | of parameters | 79,510 431,08 |        | 36,818,954 | 82,208   | 39,191,690 |  |
|            | Conventional  | 1.72%         | 0.86%  | 0.75%      | 21.16%   | 10.94%     |  |
|            | LightNN-2     | 1.86%         | 1.29%  | 0.83%      | 24.62%   | 8.84%      |  |
|            | LightNN-1     | 2.09%         | 2.31%  | 0.89%      | 26.11%   | 8.79%      |  |
| Test error | BinaryConnect | 4.10%         | 4.63%  | 1.29%      | 43.22%   | 9.90%      |  |
|            | LightNN-2-bin | 2.94%         | 1.67%  | 0.89%      | 32.58%   | 10.12%     |  |
|            | LightNN-1-bin | 3.10%         | 1.86%  | 0.94%      | 36.56%   | 9.05%      |  |
|            | BinaryNet     | 6.79%         | 3.16%  | 0.96%      | 73.82%   | 11.40%     |  |

#### **Energy-Accuracy results**

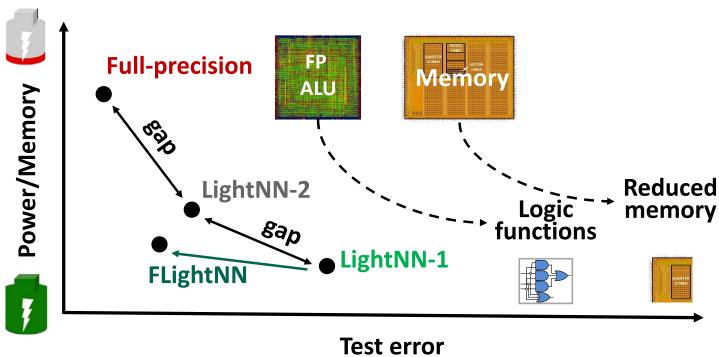
LightNNs achieve more continuous Pareto front compared to conventional DNN models



39

## **FLightNNs = Flexible LightNNs**

With higher flexibility and improved training algorithm, FLightNNs create a better Pareto front



# Flexible-k LightNNs (FLightNNs)

FLightNNs use customized k for each filter

| Lig  | htNN- | -1 filte | ers  | FLightNN filters |       |       | LightNN-2 filters |  |       |       | rs    |       |
|------|-------|----------|------|------------------|-------|-------|-------------------|--|-------|-------|-------|-------|
| 0.5  | 0.25  | 0.25     | -1   | 0.5              | 0.25  | 0.25  | -1                |  | 0.375 | 0.125 | 0.375 | 0.625 |
| -0.5 | -1    | 1        | 1    | -0.5             | -1    | 1     | 1                 |  | -0.5  | 0.625 | 0.125 | -0.5  |
| 0.25 | 0.25  | 1        | 1    | -0.25            | 1     | 0.375 | 1                 |  | -0.25 | 1     | 0.375 | 1     |
| 0.5  | 0.5   | -0.5     | 0.25 | 0.375            | 0.375 | 0.625 | -0.5              |  | 0.375 | 0.375 | 0.625 | -0.5  |

[R. Ding, D. Liu, T.-W. Chin, S. Blanton, D. Marculescu, DAC'19]

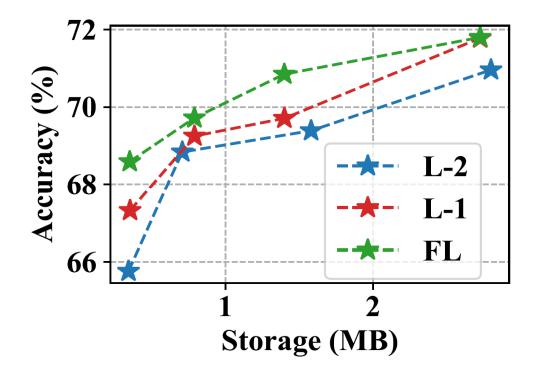
#### **FPGA Simulation Results**

 FPGA simulation results show that FLightNNs can achieve 30x speedup compared to full-precision DNNs with negligible accuracy loss

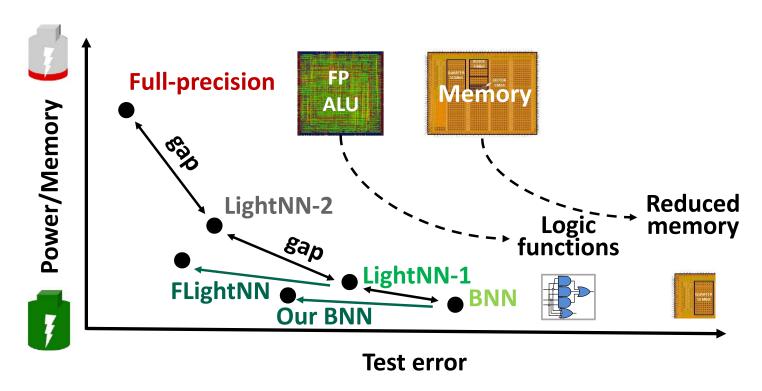
| dataset   | Model            | Accuracy | Storage | Throughput | Speedup |
|-----------|------------------|----------|---------|------------|---------|
|           | Full             | 92.85    | 18.5    | 1.3        | 1×      |
| CIFAR-10  | L-1              | 91.93    | 2.3     | 39.2       | 30.2×   |
| CIFAR-10  | FP               | 92.23    | 2.3     | 19.8       | 15.2×   |
|           | FL <sub>3a</sub> | 92.59    | 2.3     | 39.2       | 30.2×   |
|           | Full             | 71.22    | 11.2    | 7.4E+1     | 1×      |
| CIFAR-100 | L-1              | 69.71    | 1.4     | 1.1E+3     | 15.2×   |
| CIFAR-100 | FP               | 69.34    | 1.4     | 6.9E+2     | 9.3×    |
|           | FL <sub>7a</sub> | 70.85    | 1.4     | 1.1E+3     | 30.2×   |
| ImagaNet  | L-2              | 75.04    | 1.8     | 2.7E+2     | 1×      |
| ImageNet  | FL <sub>8a</sub> | 74.80    | 1.5     | 3.1E+2     | 1.16×   |

# FLightNN vs. LightNNs

**Experiment on CIFAR-100 shows that FLightNNs create a better Pareto front** than LightNN-1 and LightNN-2



# Can we recover BNN accuracy loss?



## Regularizing activation distribution for increased accuracy

- Identify which of the issues is present
  - Degeneration
  - **♦** Saturation
  - Gradient mismatch
- Adjust regularization
  - ◆ Shift distribution to 25-75 percentiles
- Enable differentiability

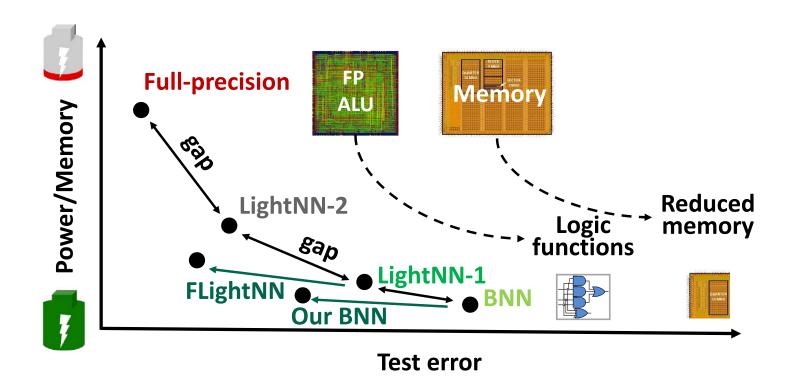
[R. Ding, T.-W. Chin, D. Liu, D. Marculescu, CVPR'19]

# **Accuracy improvement results**

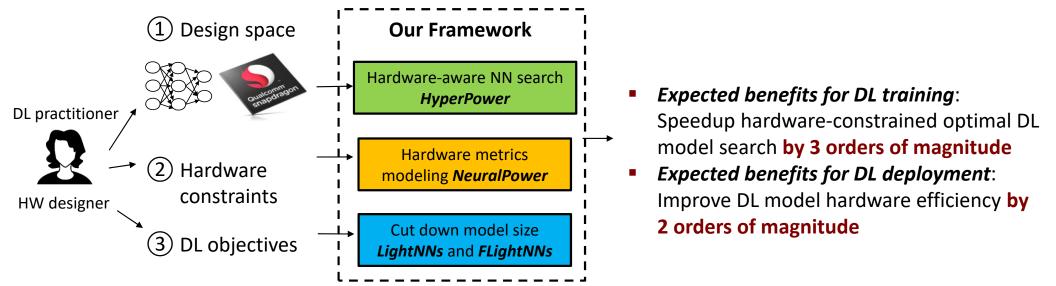
Our proposed regularization loss consistently improves accuracy of prior BNNs

| Model                 | Base  | eline | Ours  |       |  |
|-----------------------|-------|-------|-------|-------|--|
| WIOUCI                | Top-1 | Top-5 | Top-1 | Top-5 |  |
| BNN [NIPS'16]         | 36.1% | 60.1% | 41.3% | 65.8% |  |
| XNOR-Net [ECCV'16]    | 44.2% | 69.2% | 47.8% | 71.5% |  |
| DoReFa-Net [Arxiv'16] | 43.5% | -     | 47.8% | 71.5% |  |
| Compact Net [AAAI'17] | 46.6% | 71.1% | 47.6% | 71.9% |  |
| WRPN [ICLR'18]        | 48.3% | _     | 53.8% | 77.0% |  |

# FLightNNs and our improved BNNs create a better Pareto front



#### We Put the "Machine" Back in ML for True Co-Design



Impact: This methodology can enable the optimal design of hardware-constrained DL applications running on mobile/IoT platforms

# **Hey Siri...**



What's my name?



#### **Off-network**



Carnegie Mellon University
Electrical & Computer Engineering

#### Thank you!

Questions

Acknowledgements:

**Collaborators**: Shawn Blanton (CMU), Da-Cheng Juan (Google)

Students: Ermao Cai, Zhuo Chen, Ting-Wu (Rudy) Chin, Ruizhou Ding, Dexter Liu,

**Dimitrios Stamoulis** 

**EnyAC** group webpage: enyac.org

**Code available:** github.com/cmu-enyac and github.com/dstamoulis/single-path-nas







