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Hey Siri...

What’s 100 divided by 2?

able to help you
right now. Please

/ Sorry, I'm not \

try me againina

What’s my name? it

What is Apple?

Off-network
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Machine Learning Applications Push Hardware to its Limits

" Deep Learning (DL) models are now used in every modern computing system

Drones

-

[Source: CNN]

Zenfone /R

Go Beyond Reality” 55§

[Source: Nest] '

[Source: Qualcomm] [Source: Asus]

" Hardware constraints are a key limiting factor for DL on mobile platforms
¢ Energy constraints: object detection drains smartphone battery in 1 hour! [Yang et al., CVPR’17]
¢ Edge-cloud communication constraints
¢ On-device inference (response) time constraints
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Challenge: Designing DL Models under Hardware Constraints is Hard

" Hyper-parameter optimization: Find DL model with optimal learning performance

DL model Classification DL models with different
hyper-parameters error (%) hyper-parameters
A —
® /
#layers — o
#Hunits — % glassification ®
error (%) PS
learning :
rate < S
40x
>
Energy

. . . consumption
" Hardware constraints lead to an ever more challenging design space

¢ 12k models, 800 GPUs, 28 days = 62 GPU-years! [Zoph et al., arXiv:1707.07012, 2017]
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We Can’t Optimize What We Can’t Measure: DL-HW Models

@ Design space

DL practltlon

R _» —L Hardware metrics
@ Hardware : modeling NeuralPower
HW designer constraints :

select/Build/é CNN architecture {:——_—\‘
I

I | Layer-level models :
¥ |
1
]

Machine learners

Network-level models

. Detailed power, NeuraIPower
Analysis . . o
runtime & energy, with

& guidance

breakdowns

Target software/
hardware platform

_— —L
@ DL objectives I

" 90% accurate models for power, energy, and latency for DL running on HW
platforms; can be used as an objective or constraint
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NeuralPower: A Layer-wise Predictive Framework

S‘Mk—) CNN architecture \
Layer-level models I

Machine learners v
Network-level models I
k Detailed power, MeuralPawer Y,
Analysis runtime & energy,
& guidance with breakdowns T

Target software/
hardware platform

[E. Cai, D. Stamoulis, D.-C. Juan, D. Marculescu, ACML’17]
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" Energy:

" Runtime:

" Power:

Diana Marculescu © 2019

NeuralPower: Network-Level Models

A

Etotal — Ttota,l ) Pa'ug

9.5ms [ 215W

6.9ms / 187W 13.1ms / 224W

N
Ttotal — E Tn
n=1
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NeuralPower: Layer-Level Models

® Runtime model: Degree K; polynomial terms
Dt
T(xr) = Z ¢ + Z c’S Additional terms
J L= s
/ DT
Feature space where x7 € RPT; ¢;; € N; V5, Z qij < Kr
i=1

e.g., Feature space for Conv. = {kernel size, stride size, padding size, #filters, ...}

. [ ]
Power model: Degree K, polynomial terms

Dp
prxe) = 3o (T e 52 ffter) nsont e
J - P
/ Dp

Feature space where xp € RDP; mij € N; V7, Zmij < Kp

i=1
e.g., Feature space for Conv. = {kernel size, log(kernel size), stride size, log(stride size), ...}
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Layer-level Results

" Runtime:

¢ Baseline: Paleo [Qi et al., ICLR’17]: uses analytical methods to calculate the response time

for CNNs L | Neural Power | Paleo Qi et al. (2016)
ayer type
| Model size RMSPE RMSE (ms) | RMSPE RMSE (ms)
Convolutional 60 39.97% 1.019 58.29% 4.304
Fully-connected 17 41.92% 0.7474 73.76% 0.8265
Pooling 31 11.41% 0.0686 79.91% 1.763
" Power:

¢ No prior work with respect to power prediction

NeuralPower
Layer type
Model size RMSPE RMSE (W)
Convolutional 75 7.35% 10.9172
Fully-connected 15 9.00% 10.5868
Pooling 30 6.16% 6.8618

[E. Cai, D. Stamoulis, D.-C. Juan, D. Marculescu, ACML’17]
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Network-level Results: Breakdown

Runtime Power
VGG-16 * VGG-16
- convl-1
Egﬂﬁ_% Paleo convl-2
pooll B NeuralPower pooll
conv2-1 EEE Actual runtime conv-1
conv2-2 conv2-2
pool2 pool2
conv3-1 conv3-1
conv3-2 conv3-2
conv3-3 conv3-3
pool3 pool3
conv4-1 conv4-1
conv4-2 conv4-2
conv4-3 conv4-3
pool4 poglall
- conv5s-

conv>-2 Paleo error: -96% Conva.>
C°g‘g—’g,;§ NeuralPower error: - 3% C"g‘g,i;g

fch ] fcé I NeuralPower

fc7 1 fc7 B Actual power

fC8 -l fcs T T 1 T 1 T

0 20 40 60 80 75 100 125 150 175 200 225 250
Runtime (ms) Power (W)

* Comparison against prior art: “[H.Qi, E.R. Sparks, and A. Talwalkar., ICLR'17]
[E. Cai, D. Stamoulis, D.-C. Juan, D. Marculescu, ACML’17]
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Network-level Results: Runtime & Power

. CNN Qi et al. (2016) | NeuralPower | Actual runtime
“ Runtime name Paleo (ms) ; I (ms) Ttotal (ms)

VGG-16 345.83 373.82 368.42

AlexNet 33.16 43.41 39.02

NIN 45.68 62.62 50.66

Overfeat 114.71 195.21 197.99

CIFAR10-6conv 28.75 bl.13 50.09

= Power CNN N e:wralPower Actual power

name Ptotal (W) Pa.'vg (W)

N o R VGG-16 206.88 204.80
b D ne1 P T AlexNet 174.25 194.62
avg — ZN T NIN 179.98 226.34
n=17m Overfeat 172.20 172.30
CIFAR10-6conv 165.33 188.34

[E. Cai, D. Stamoulis, D.-C. Juan, D. Marculescu, ACML’17]
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Network-level Results: Energy

N
- Energy EA'total — Ttota;l ' pa'vg — Z pn ) Tn
n=1
CNN NeuralPower | Actual energy
name Eiotal (J) Eiotal (-])
VGG-16 77.312 75.452
AlexNet 7.565 7.594
NIN 11.269 11.465
Overfeat 33.616 34.113
CIFAR10-6conv 8.938 9.433

[E. Cai, D. Stamoulis, D.-C. Juan, D. Marculescu, ACML’17]
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If We Can Measure, Can We Optimize It Efficiently?

Our Framework :Classification
error (%)

DL models with different

hyper-parameters

—
e 00

@ Design space

Hardware-aware NN search
SinglePath HNAS

o O
DLpractltlon e © o0

|
|
|
|
. |
—1, Hardware metrics I @
R”@Hardware i I o e ..
|
|
|
|
|
|

modeling NeuralPower
ng 40x

I
I
HW designer constraints |
I Energy

— —L
@ DL objectives l

" Neural architecture search can bring 5-10x improvement in energy or latency
with minimal loss in accuracy; or can satisfy real-time constraints for inference
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Device-aware ConvNet design: Key questions for practitioners

Mobile AutoML

1. Search
Space

Conv '
3x3

Device-Aware
ConvNet

————————————————_/

\

* 2.NAS optimization
formulation

————————

rrrrrr

1

1

1

> !
Learning ’@Ll :
Task )

—— o e = = = -

I
I
1
1
1
1
1
|

" Can we automatically design ConvNets with highest image classification accuracy
under smartphone latency constraints?

" Can we reduce the search cost of Neural Architecture Search (NAS)
from days down to a few hours?
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Background: Multi-Path Differentiable NAS

Existing Multi-Path Differentiable NAS approaches [1:23]

Input

, " Supernet: each candidate operation
Layer 1 Conv . h |

; , as a separate path per layer

e / .

v/ Conv " NAS problem viewed as an
Layer/ 7 expensive path-level selection

\\ —

b 0 1 o " Number of parameters per layer:
Layer N | \ e T TEEEEEEEER b .

7 Trainable all weights across all paths
Output NAS choices

" Multi-path Differentiable NAS interchangeably updates NAS choices and model weights
" The combinatorially large design space leads to high search cost time (>100 GPU-hours)

[1] Cai et al. ProxylessNAS, ICLR’19, [2] Wu et al. FBNet, CVPR’19, [3] Liu et al. DARTS, ICLR’18
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Proposed Single-Path NAS: Key contributions

Proposed methodology: incorporate all candidate ops over one single-path

Input " Supernet: all candidate operations
Lay;r 1 in a single superkernel per layer
: /// = NAS problem viewed as an
Layer i efficient kernel-level selection
: \\ " Number of parameters per layer:
E \ weights of largest candidate op only
Output

" Novel differentiable “encoding” of NAS design choices over single-path design space
" State-of-the-art AutoML: up to 5,000 X reduced search cost, ImageNet topl 75.62%

[D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu, D. Marculescu, ECML-PKDD’19]
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Making kernel architectural decisions differentiable

3x3 kernel weights “outer” shell weights
Input g ; N y i
4 O | . : y .
iy superkernel o '+ 0 -
I / b4 1 1 I'- f '/
e // ™M i i _ _:/
v/ | :
Layer i I ! : -
= > | : s
\ S ! ! y ’
v \\ \ . o i + 1 " i 7 /] ,/,
Layer N | . Conv3x3 9, : 1 ,f o
¥ ' N ! [ S L
Output Conv 5x5 : |

\ 4

_______________

" NAS kernel choice is formulated via a differentiable decision function [1:2]

Wi = W3x3 4—U(HW5><5\3><3H2 > 1) - Wox5\3x3

v J \
1 .
Group lasso  — Trainable kernel-
[1] Ding et al. FlightNNs, DAC’19

[2] Choi et al., PACT, 2018 threshold variable
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Making channel architectural decisions differentiable

= Similarly

superkernel

!

exp. ratio 3

exp. ratio 6

drop layer

15t % of channels 2nd % of channels

,: Trainable channels-
threshold variables

2
w =0 (|[Weall” > te=s) - (Wi3 +0 (|[Wre\sl|” > te=6) - Wk6\3)
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Single-Path NAS: as costly as training a compact model

*mobile inverted
bottleneck conv layer

I
Searchable I
I

Conv w, I
I

I

I

J

/

. . Trade-off ] _
" Flexibly extendable to various NAS choices NAS Objective: cross- parameter Mobile runtime
. [ entropy loss loss term
" MobileNet space: [Tanetal.’19] N \
model as large as largest candidate op min L(wl|tg,t.) =CE+ A R
w by, te
Output I 1 I 7}_/-"’:‘ ; A \"\\: ; § _g \
(’ _____________ \‘, ,I Conv xt I . | I _Conv 1x1 E gé
/II *MBConv- /I’ : Searchable I I searchable : .’._:31
I kernecIIIIc\,I 1I I ESqueezeand I ' Squeeze : .
\\i exp.ratioe | | xcitation Wi, | [ Conv w, !
\I\ t /II : Y \ A Wos W25 Wo.50.25 no SE "
Sl - I_i Depthwise h B g
|

zero-valued
kernel weights .~

Search space per MBConv:
* Kernel size k: 3x3, 5x5 s
* Expansion ratio e: 3,6
* SE ratio se: 0, 0.25, 0.5 Wixs Waxs Wsxs\3x3 J

» Skip ops: skip layer or not

Diana Marculescu © 2019
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Hardware-Aware NAS: Making Runtime Term Differentiable

Input
" Total ConvNet runtime is the sum Operation Runtime
. /
of per-layer runtimes [1.2] i Layer i — :
/ ms
Conv 3x3 '
ayere | oy
. o wee \ ) H
" We profile on Pixel 1 phone P\ Layer i - g 7ms
] Layer N [ Conv 5x5
" Populate Look-up-Table model per layer i o T o
U pu (L X ]

" Express per-layer runtime as a = 110 =
function of the Single-Path NAS E |77 x=Y e
. . © 100 - G
architectural choices E e~
S 90 o
_ . o 4/
R, =R}, , +0(use 5 X 5) - (R5x5 —R%y3) B 80 a¥
3 -
@ 70 /
0] L
s <o
70 80 90 100 110

1] Cai et al. ProxylessNAS, ICLR’19, [2] Wu et al. FBNet, CVPR’19 b .
[1] Y [2] Predicted Runtime (ms)
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Single-Path NAS achieves state-of-the-art AutoML results

Single-Path NAS pushes state-of-the-art w.r.t
both accuracy & NAS search cost

76.0

" Single-Path ConvNet:

75.62% top-1 ImageNet 75.5 —_
accuracy (~80ms runtime) 75 0 | MobileNetv3 Mnashet
54 Amoe.baNet
= Single-Path NAS: the e o8 NASNet
reduced NAS search cost single-Path NAS .

improves upon

by up to 5,000 X

ImageNet Topl Accuracy (%)
A
o

713.5 7 manual designs
Multi-Path NAS Standalone NAS
73.01 1 Manual Designs
12D < >
obileNetv?2 5,000x search cost reduction
[1] Tan et al. MnasNet, CVPR’19 72.0-?’I """"" i s WA SRS S S
[2] Wu et al. FBNet, CVPR’19 0 100 101 102 103 104 105 105

[3] Cai et al. ProxylessNAS, ICLR’19
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Can We Do Better?

Our Framework

@ Design space

Hardware-aware NN search

| SinglePath HNAS
DL practltlon |
I
g . —Ls Hardware metrics
@ Hardware : modeling NeuralPower S
HW designer constraints | Tt

‘ .
Logic Memory J

™ S —L
®otaneves ||

" Up to 100x lower energy, 5x less area with minimal loss in accuracy

Test error
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LightNNs: Lightweight quantized DNN model

" Replace multipliers with limited shift and add operators
¢ w-x =sign(w)(2™ + 2™ 4 ... 4+ 2"K) . x = sign(W)(x K ny + -+ x K ng)
¢ We constrain K to be one or two
¢ When K = 1, the equivalent multiplier is just a shift
¢ When K = 2, the equivalent multiplier is two shifts and one add (shown below)

0 = f(wyxq + Wyxy) 0= f((x1K<nyp) + (X1 K ngp) + (x2
K nyq) + (X K nyz))
fQ)
+
Wl W2
X1 X2
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LightNNs: Lightweight quantized DNN model

Full-precision

[
<°.
%
LightNN-2 "~ _ ~~-__, Reduced
@ ~~~__,  Logic memory
8ap functions

@ LightNN-1 @

Test error

a Power/Memory ( -\
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Training LightNNs

" Backpropagation algorithm is modified to improve the accuracy of trained
LightNNs

Initialization Forward Backward Update weights
(rounding (floating-point (floating-point
weights) gradients) weights)

random wy w, = round (Ws_1) al We = We 1 — ol

t t-1— 1
6wc aWc

W;_4 is also saved

for weights update [: loss function n: learning rate

[R. Ding, D. Liu, S. Blanton, D. Marculescu, GLSVLSI'17, ACM TRETS’19]
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Test error results

" In most cases, from good to bad: Conventional > LightNNs > BNNs

MNIST CIFAR-10
1-hidden 2-conv 3-hidden 3-conv 6-conv
Number of parameters 79,510 431,080 36,818,954 82,208 39,191,690
Conventional 1.72% 0.86% 0.75% 21.16% 10.94%
LightNN-2 1.86% 1.29% 0.83% 24.62% 8.84%
LightNN-1 2.09% 2.31% 0.89% 26.11% 8.79%
Test error | BinaryConnect 4.10% 4.63% 1.29% 43.22% 9.90%
LightNN-2-bin 2.94% 1.67% 0.89% 32.58% 10.12%
LightNN-1-bin 3.10% 1.86% 0.94% 36.56% 9.05%
BinaryNet 6.79% 3.16% 0.96% | 73.82% | 11.40%

Diana Marculescu © 2019
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Energy-Accuracy results

LightNNs achieve more continuous Pareto front compared to conventional DNN models

® A LightNNs
® A Conventional models
A indicates Pareto-optimal configs

MNIST CIFAR-10
0% 4 10°¢ o
. [ \
\
4 \
]
° . -~ ® 1 ~100x energy reduction
) (@) Ay 1 .
501 ¢ =101t 1 without accuracy loss
0 Q
2 2 '
) A ) ]
D 2 o/
N N ¥
g L. g a0
g 1072 ‘e ° 5102
° = A
A A
A A °
[ J
A N A . A
10_3 ) ) ) ‘ ‘ ‘ ‘ 10-3 | | | | | | L A |
0 1 2 3 4 5 6 7 0 10 20 30 40 50 60 70 80
Test error (%) Test error (%)

Diana Marculescu © 2019 EMC"2 Workshop @ NeurlPS 2019 — December 12, 2019 39



FLightNNs = Flexible LightNNs

" With higher flexibility and improved training algorithm, FLightNNs create a
better Pareto front

L .

- Full-precision

- ®

£ @

3 %

=

= LightNN-2 - ~ - __, Reduced
S ® ~~<__,  Logic memory
S ° Sap functions
. FL;gMNN\ @ LightNN-1 @

~y

Test error
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Flexible-k LightNNs (FLightNNs)

" FLightNNs use customized k for each filter

LightNN-1 filters

05 025 0.25 -1

-0.5 -1 1 1

0.25 0.25 1 1

05 05 -0.5 0.25

Diana Marculescu © 2019

FLightNN filters

05 025 0.25 -1

-0.5 -1 1

[R. Ding, D. Liu, T.-W. Chin, S. Blanton, D. Marculescu, DAC’19]
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FPGA Simulation Results

" FPGA simulation results show that FLightNNs can achieve 30x speedup
compared to full-precision DNNs with negligible accuracy loss

dataset Model Accuracy Storage Throughput Speedup
Full 92.85 18.5 1.3 1X
L-1 91.93 2.3 39.2 30.2%
CIFAR-10
FP 92.23 2.3 19.8 15.2X
FLs, 92.59 2.3 39.2 30.2%
Full 71.22 11.2 7.4E+1 1x
L-1 69.71 1.4 1.1E+3 15.2X
CIFAR-100
FP 69.34 1.4 6.9E+2 9.3%x
FL,, 70.85 1.4 1.1E+3 30.2%
L-2 75.04 1.8 2.7E+2 1X
ImageNet
FLg, 74.80 1.5 3.1E+2 1.16X
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FLightNN vs. LightNNs

" Experiment on CIFAR-100 shows that FLightNNs create a better Pareto front
than LightNN-1 and LightNN-2

72 1 —’__:’_;*
< i
e—/ 70 7 */,’—‘— f’:'_,-" -
2| oer
g * 71 '*' L-2
= 681,/

3 */' -- L-1

66'*:1 -*-' FL

1 2

Storage (MB)
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Can we recover BNN accuracy loss?

"' A
— Full-precision
- o
£ &
o %
E S
ey LightNN-2 S~ ~~-___ Reduced
S o S~~__,  Llogic memory
S ° Sap functions
FLightNN g @ &N+ 3
ﬂ Our BNN

Test error
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Regularizing activation distribution for increased accuracy

" ldentify which of the issues is present
¢ Degeneration
4 Saturation
¢ Gradient mismatch

" Adjust regularization
¢ Shift distribution to 25-75 percentiles

" Enable differentiability

[R. Ding, T.-W. Chin, D. Liu, D. Marculescu, CVPR’19]
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Accuracy improvement results

" Our proposed regularization loss consistently improves accuracy of prior BNNs

Model Baseline Ours
Top-1  Top-5 | Top-1 Top-5
BNN [NIPS’16] 36.1% 60.1% | 41.3% 65.8%

XNOR-Net [ECCV’16] | 442% 69.2% | 47.8% 71.5%

DoReFa-Net [Arxiv’16] | 43.5% -
Compact Net [AAAI'17] | 46.6% 71.1% | 47.6% 71.9%
WRPN [ICLR’ 18] 48.3% - 53.8% 77.0%
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FLightNNs and our improved BNNs create a better Pareto front

I
—— Full-precision
- )
£ &
) % .
= N
= LightNN-2  “~_ ~ -, Reduced
g o S~~__,  Logic memory
S ° Sap functions
FLightNN g @ &N A 3
Our BNN

Test error
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We Put the “Machine” Back in ML for True Co-Design

@ Design space

Hardware-aware NN search

HyperPower = Expected benefits for DL training:

|
|
|
|
|
|
: Speedup hardware-constrained optimal DL
! b e e ]_’ model search by 3 orders of magnitude
— @ Hardware I
:
|
|
|
|

DL practltlon

modeling NeuralPower = Expected benefits for DL deployment:
Improve DL model hardware efficiency by
2 orders of magnitude

HW designer constraints

Impact: This methodology can enable the optimal design of hardware-constrained DL
applications running on mobile/loT platforms
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Hey Siri...

1007% =
Have It All
You're Diana.
That's what you

What’S my name? told me, anyway.

Off-network
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