
What DL Hardware
Will We Need?
Yann LeCun
NYU - Courant Institute & Center for Data Science
Facebook AI Research
http://yann.lecun.com

EMC^2, 2019-12-13

Y. LeCun

1986-1996 Neural Net Hardware at Bell Labs, Holmdel

1986: 12x12 resistor array
Fixed resistor values

E-beam lithography: 6x6microns

1988: 54x54 neural net
Programmable ternary weights

On-chip amplifiers and I/O

1991: Net32k: 256x128 net
Programmable ternary weights

320GOPS, 1-bit convolver.

1992: ANNA: 64x64 net
ConvNet accelerator: 4GOPS

6-bit weights, 3-bit activations

6 microns

Y. LeCun

LeNet character recognition demo 1992

Running on an AT&T DSP32C (floating-point DSP, 20 MFLOPS)

Y. LeCun

FPGA ConvNet Accelerator: NewFlow [Farabet 2011]

NeuFlow: Reconfigurable Dataflow architecture
Implemented on Xilinx Virtex6 FPGA

20 configurable tiles. 150GOPS, 10 Watts

Semantic Segmentation: 20 frames/sec at 320x240

Exploits the structure of convolutions

NeuFlow ASIC [Pham 2012]
150GOPS, 0.5 Watts (simulated)

Y. LeCun

Semantic Segmentation with ConvNets [Farabet 2012]

Y. LeCun

Lessons learned #1

1.1: It’s hard to succeed with exotic hardware
Hardwired analog → programmable hybrid → digital

1.2: Hardware limitations influence research directions
It constrains what algorithm designers will let themselves imagine

1.3: Good software tools shape research and give superpowers
But require a significant investment

Common tools for Research and Development facilitates productization

1.4: Hardware performance matters
Fast turn-around is important for R&D

But high-end production models always take 2-3 weeks to train

1.5: When hardware is too slow, software is not readily available, or
experiments are not easily reproducible, good ideas can be abandoned.

Y. LeCun

Lessons learned #2

2.1: Good results are not enough
Making them easily reproducible also makes them credible.

2.2: Hardware progress enables new breakthroughs
General-Purpose GPUs should have come 10 years earlier!

But can we please have hardware that doesn’t require batching?

2.3: Open-source software platforms disseminate ideas
But making platforms that are good for research and production is hard.

2.4: Convolutional Nets will soon be everywhere
Hardware should exploit the properties of convolutions better

There is a need for low-cost, low-power ConvNet accelerators

Cars, cameras, vacuum cleaners, lawn mowers, toys, maintenance robots...

Y. LeCun

What will be the killer app of embedded DL hardware?

AR glasses!
Yes, Facebook is working on AR glasses

Yes, obviously, Facebook is working on DL hardware for AR glasses

DL-based functions in AR glasses:
Position tracking / SLAM / 3D reconstruction

hand pose tracking, gesture recognition

Recognition: landmarks, products, faces, plants, birds, insects...

OCR, ASR, TTS

Translation (from speech and OCR’ed text)

…

All of this on a tiny device that needs to run all day.

Y. LeCun

Supervised Learning works (but requires many labeled samples)

Training a machine by showing examples instead of programming it
When the output is wrong, tweak the parameters of the machine

PLANE

CAR

Works well for:
Speech→words

Image→categories

Portrait→ name

Photo→caption

Text→topic

….

Y. LeCun

Detectron2

Panoptic instance segmentation, (dense) body pose estimation
Open source: https://github.com/facebookresearch/detectron2

Y. LeCun

Reinforcement Learning: works great for games and simulations.

57 Atari games: takes 83 hours
equivalent real-time (18 million
frames) to reach a performance that
humans reach in 15 minutes of play.
[Hessel ArXiv:1710.02298]

Elf OpenGo v2: 20 million self-play
games. (2000 GPU for 14 days)
[Tian arXiv:1902.04522]

StarCraft: AlphaStar 200 years of
equivalent real-time play
[Vinyals blog post 2019]

OpenAI single-handed Rubik’s cube
10,000 years of simulation

Y. LeCun

But RL Requires too many trials in the real world

Pure RL requires too many
trials to learn anything
it’s OK in a game

it’s not OK in the real world

RL works in simple virtual
world that you can run faster
than real-time on many
machines in parallel.

Anything you do in the real world can kill you

You can’t run the real world faster than real time

New Deep Learning
Architectures

Attention,
Dynamic architectures,
hyper networks.

Y. LeCun

Memory-Augmented Networks

Recurrent net memory

 Recurrent networks cannot remember things for very long
The cortex only remember things for 20 seconds

 We need a “hippocampus” (a separate memory module)
LSTM [Hochreiter 1997], registers

Memory networks [Weston et 2014] (FAIR), associative memory

Stacked-Augmented Recurrent Neural Net [Joulin & Mikolov 2014] (FAIR)

Neural Turing Machine [Graves 2014],

Differentiable Neural Computer [Graves 2016]

Y. LeCun

Differentiable Associative Memory == “soft RAM”

Used very widely in NLP

MemNN, Transformer Network, ELMO,
GPT, BERT, GPT2, GloMO, RoBERTa...

Essentially a “soft” RAM or hash table

Input (Address) X

Keys Ki

Values Vi

Dot Products

Softmax

Sum

Y=∑
i

CiV i

Ci=
eK i

T X

∑
j

eK j
T X

Y. LeCun

All-Attention Circuit with persistent memory

[Sukhbaatar arXiv:1907.01470]

Y. LeCun

Learning to synthesize neural programs for visual reasoning

https://research.fb.com/visual-reasoning-and-dialog-towards-natural-language-conversations-about-visual-data/

Y. LeCun

Networks produced by other networks

2D image to 3D model [Ltitwin & Wolf arXiv:1908.06277]
Net1 → weights of Net2: implicit function for 3D shape

Y. LeCun

ConvNets on Graphs (fixed and data-dependent)

Graphs can represent: Natural
language, social networks, chemistry,
physics, communication networks...

Review paper: “Geometric deep learning: going
beyond euclidean data”, MM Bronstein, J Bruna, Y
LeCun, A Szlam, P Vandergheynst, IEEE Signal
Processing Magazine 34 (4), 18-42, 2017
[ArXiv:1611.08097]

Y. LeCun

Spectral ConvNets / Graph ConvNets

Regular grid graph
Standard ConvNet

Fixed irregular graph
Spectral ConvNet

Dynamic irregular graph
Graph ConvNet

IPAM workshop:
http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/

Y. LeCun

Sparse ConvNets: for sparse voxel-based 3D data

ShapeNet competition results ArXiv:1710.06104]
Winner: Submanifold Sparse ConvNet
[Graham & van der Maaten arXiv 1706.01307]
PyTorch: https://github.com/facebookresearch/SparseConvNet

Y. LeCun

Lessons learned #3

3.1: Dynamic networks are gaining in popularity (e.g. for NLP)
Dynamicity breaks many assumptions of current hardware

Can’t optimize the compute graph distribution at compile time.

Can’t do batching easily!

3.2: Large-Scale Memory-Augmented Networks...
...Will require efficient associative memory/nearest-neighbor search

3.3: Graph ConvNets are very promising for many applications
Say goodbye to matrix multiplications?

Say goodbye to tensors?

3.4: Large Neural Nets may have sparse activity
How to exploit sparsity in hardware?

http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/

How do humans
and animals
learn so quickly?

Not supervised.
Not Reinforced.

Y. LeCun

Babies learn how the world works by observation

Largely by observation, with remarkably little interaction.

Photos courtesy of
Emmanuel Dupoux

Y. LeCun

Early Conceptual Acquisition in Infants [from Emmanuel Dupoux]

Pe
rc

e
p
ti

o
n

P
ro

d
u
ct

io
n

Physics

Actions

Objects

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Time (months)

stability,
support

gravity, inertia
conservation of
momentum

Object permanence

solidity, rigidity

shape
constancy

crawling walking
emotional contagion

Social-
communicative

rational, goal-
directed actions

face tracking

proto-imitation

pointing

biological
motion

false perceptual
beliefs

helping vs
hindering

natural kind categories

Self-Supervised
Learning

Predict everything
from everything else

Y. LeCun

Self-Supervised Learning = Filling in the Blanks

Predict any part of the input from any
other part.

Predict the future from the past.

Predict the masked from the visible.

Predict the any occluded part from all
available parts.

time or space →

Pretend there is a part of the input you don’t know and predict that.
Reconstruction = SSL when any part could be known or unknown

Y. LeCun

Self-Supervised Learning: filling in the bl_nks

Natural Language Processing: works great!

INPUT: This is a […...] of text extracted […..] a large set of [……] articles

OUTPUT: This is a piece of text extracted from a large set of news articles

Encoder

Decoder

CODE

Image Recognition / Understanding: works so-so [Pathak et al 2014]

Encoder Decoder
CODE

Y. LeCun

Learning Representations through Pretext SSL Tasks

Text / symbol sequences (discrete, works great!)
Future word(s) prediction (NLM)

Masked words prediction (BERT et al.)

Image (continuous)
Inpainting, colorization, super-resolution

Video (continuous)
Future frame(s) prediction

Masked frames prediction

Signal / Audio (continuous)
Restoration

Future prediction

Y. LeCun

Self-Supervised Learning works very well for text

Word2vec
[Mikolov 2013]

FastText
[Joulin 2016] (FAIR)

BERT
Bidirectional Encoder
Representations from
Transformers

[Devlin 2018]

Cloze-Driven Auto-Encoder
[Baevski 2019] (FAIR)

RoBERTa [Ott 2019] (FAIR)

Figure credit: Jay Alammar http://jalammar.github.io/illustrated-bert/

Y. LeCun

SSL works less well for images and video

Y. LeCun

Learning World Models for Autonomous AI Agents

Learning forward models for control
s[t+1] = g(s[t], a[t], z[t])

Model-predictive control, model-predictive policy learning, model-based RL

Robotics, games, dialog, HCI, etc

Y. LeCun

Three Types of Learning

Reinforcement Learning
The machine predicts a scalar reward given once in a
while.

weak feedback

Supervised Learning
The machine predicts a category or a few numbers for
each input

medium feedback

Self-supervised Learning
The machine predicts any part of its input for any
observed part.

Predicts future frames in videos

A lot of feedback

PLANE

CAR

Y. LeCun

How Much Information is the Machine Given during Learning?

“Pure” Reinforcement Learning (cherry)
The machine predicts a scalar reward given once in a
while.

A few bits for some samples

Supervised Learning (icing)
The machine predicts a category or a few numbers for
each input

Predicting human-supplied data

10→10,000 bits per sample

Self-Supervised Learning (cake génoise)
The machine predicts any part of its input for any
observed part.

Predicts future frames in videos

Millions of bits per sample

Y. LeCun

The Next AI Revolution

 THE REVOLUTION THE REVOLUTION
WILL NOT BE SUPERVISEDWILL NOT BE SUPERVISED
 (nor purely reinforced)(nor purely reinforced)

With thanks to Alyosha Efros

and Gil Scott Heron

Get the T-shirt!

Jitendra Malik: “Labels are the opium of the machine learning researcher”

Energy-Based
Models

Learning to deal with
uncertainty while eschewing
probabilities

Problem: uncertainty!

There are many plausible words that
complete a text.

There are infinitely many plausible
frames to complete a video.

Deterministic predictors don’t work!

How to deal with uncertainty in the
prediction?

 G(x)

y

x y

C(y,y)

E(x , y)=C (y ,G(x))

Distance
measure

Prediction

Predictor

Y. LeCun

The world is not entirely predictable / stochastic

Video prediction:
A deterministic predictor with L2
distance will predict the average of all
plausible futures.

Blurry prediction!

Y. LeCun

Energy-Based Model

Scalar-valued energy function: F(x,y)
measures the compatibility between x and y

Low energy: y is good prediction from x

High energy: y is bad prediction from x

Inference:

Energy
Function

x

F(x,y)

y x

y

Dark = low energy (good)
Bright = high energy (bad)
Purple = data manifold

y̌=argmin y F(x , y)

[Figure from M-A Ranzato’s PhD thesis]

Y. LeCun

Energy-Based Model: unconditional version

Scalar-valued energy function: F(y)
measures the compatibility between the
components of y

If we don’t know in advance which part of
y is known and which part is unknown

Example: auto-encoders, generative
models (energy = -log likelihood)

Energy
FunctionF(y)

y y1

y2

Dark = low energy (good)
Bright = high energy (bad)
Purple = data manifold

Y. LeCun

Training an Energy-Based Model

Parameterize F(x,y)
Get training data (x[i], y[i])
Shape F(x,y) so that:
F(x[i], y[i]) is strictly smaller than F(x[i], y) for
all y different from y[i]

F is smooth (probabilistic methods break that!)

Two classes of learning methods:
1. Contrastive methods: push down on
F(x[i], y[i]), push up on other points F(x[i], y’)

2. Architectural Methods: build F(x,y) so that
the volume of low energy regions is limited or
minimized through regularization

Energy
Function

x

F(x,y)

y

Y. LeCun

Seven Strategies to Shape the Energy Function

Contrastive: [they all are different ways to pick which points to push up]
C1: push down of the energy of data points, push up everywhere else: Max likelihood (needs
tractable partition function or variational approximation)

C2: push down of the energy of data points, push up on chosen locations: max likelihood with
MC/MMC/HMC, Contrastive divergence, Metric learning, Ratio Matching, Noise Contrastive
Estimation, Min Probability Flow, adversarial generator/GANs

C3: train a function that maps points off the data manifold to points on the data manifold:
denoising auto-encoder, masked auto-encoder (e.g. BERT)

 Architectural: [they all are different ways to limit the information capacity of the code]
A1: build the machine so that the volume of low energy stuff is bounded: PCA, K-means,
Gaussian Mixture Model, Square ICA…

A2: use a regularization term that measures the volume of space that has low energy: Sparse
coding, sparse auto-encoder, LISTA, Variational auto-encoders

A3: F(x,y) = C(y, G(x,y)), make G(x,y) as "constant" as possible with respect to y: Contracting
auto-encoder, saturating auto-encoder

A4: minimize the gradient and maximize the curvature around data points: score matching

Y. LeCun

Simple examples: PCA and K-means

 Limit the capacity of z so that the volume of low energy stuff is bounded
PCA, K-means, GMM, square ICA...

F (Y)=‖W TWY−Y‖
2

PCA: z is low dimensional
K-Means,
Z constrained to 1-of-K code
F (Y)=minz∑i

‖Y−W i Z i‖
2

Y. LeCun

Latent-Variable EBM

Allowing multiple predictions through a latent variable

Conditional:

Unconditional

x

z

y

F (x , y)=minz E(x , y , z)

z

y

F (y)=minz E (y , z)

F (y)=−
1
β
log [∫

z

exp(−βE (y , z))]

F (x , y)=−
1
β
log [∫

z

exp (−β E(x , y , z))]

E(x,y,z)

E(y,z)

Y. LeCun

Latent-Variable EBM for multimodal prediction

Allowing multiple predictions
through a latent variable

As z varies over a set, y varies over
the manifold of possible
predictions

Examples:
K-means

Sparse modeling

GLO

[Bojanowski arXiv:1707.05776]

y

x

z

y

h

C(y,y)

Pred(x)

Dec(z,h)

F (x , y)=minz E(x , y , z)

Y. LeCun

Latent-Variable EBM example: K-means

Decoder is linear, z is a 1-hot vector (discrete)

Energy function:

Inference by exhaustive search

Volume of low-energy
regions limited by
number of prototypes k

y

z

y

 Wz

||y-y||2min
z

E(y , z)=‖y−Wz‖2 z∈1hot

F (y)=min z E (y , z)

y1

y2

Contrastive Embedding

Distance measured in feature space
Multiple “predictions” through feature invariance
Siamese nets, metric learning [YLC NIPS’93,CVPR’05,CVPR’06]

Advantage: no pixel-level reconstruction
Difficulty: hard negative mining
Successful examples for images:
DeepFace [Taigman et al. CVPR’14]

PIRL [Misra et al. To appear]

MoCo [He et al. Arxiv:1911.05722]

Video / Audio
Temporal proximity [Taylor CVPR’11]

Slow feature [Goroshin NIPS’15]

Pred(x)

x y

h

C(h,h’)

Pred(y)

h’

Positive pair:
Make F small

Negative pair:
Make F large

Y. LeCun

MoCo on ImageNet [He et al. Arxiv:1911.05722]

Denoising AE: discrete

[Vincent et al. JMLR 2008]

Masked Auto-Encoder
[BERT et al.]

Issues:
latent variables are in
output space

No abstract LV to control
the output

How to cover the space of
corruptions?

y

x

z

y

h

C(y,y)

 Dec(h)

 Softmax

 Switches

 Pred(x)

corruption

Latent variable turns
Softmax vector(s) into
Observed word(s)

This is a [...] of text extracted
[...] a large set of [...] articles

This is a piece of text extracted
from a large set of news articles

Y. LeCun

Prediction with Latent Variables

If the Latent has too much capacity...
e.g. if it has the same dimension as y

 … then the entire y space could be perfectly
reconstructed

For every y, there is always a z that will
reconstruct it perfectly
The energy function would be zero everywhere

This is no a good model….

Solution: limiting the information capacity of
the latent variable z.

Pred(x)

y

x y

Dec(z,h)

h

C(y,y)

z

E(x , y , z)=C (y , Dec(Pred (x), z))

Y. LeCun

Regularized Latent Variable EBM

Regularizer R(z) limits the information capacity of z
Without regularization, every y may be reconstructed
exactly (flat energy surface)

Examples of R(z):
Effective dimension

Quantization / discretization

L0 norm (# of non-0 components)

L1 norm with decoder normalization

Maximize lateral inhibition / competition

Add noise to z while limiting its L2 norm (VAE)

<your_information_throttling_method_goes_here>

Pred(x)

y

x y

Dec(z,h)

h

C(y,y)

z

 R(z)

E(x , y , z)=C (y , Dec(Pred (x), z))+λ R (z)

Y. LeCun

Unconditional Regularized Latent Variable EBM

Unconditional form. Reconstruction. No x, no predictor.
Example: sparse modeling
Linear decoder

L1 regularizer on Z

y

z

y

 Dec(z)

C(y,y)

 R(z)

min
z

y

z

y

 Wz

||y-y||2

|z|
L1

min
z

E(y , z)=‖y−Wz‖2+λ|z|

LatVar inference is expensive!

Let’s train an encoder to predict the latent variable

Predictive Sparse Modeling
R(z) = L1 norm of z

Dec(z,h) gain must be bounded (clipped weights)

Sparse Auto-Encoder

LISTA [Gregor ICML 2010]
Pred(x)

y

x y

Dec(z,h)

h

C(y,y)

z R(z)

Enc(y,h)

D(z,z)

z

E(x , y , z)=C (y , Dec(z , h))+D(z , Enc (x , y))+λ R (z)

y

Y. LeCun

Sparse AE on handwritten digits (MNIST)

256 basis functionsBasis functions (columns of decoder matrix)
are digit parts
All digits are a linear combination of a small number of these

Y. LeCun

Predictive Sparse Decomposition (PSD): Training

Training on natural
images patches.
12X12

256 basis functions

[Ranzato 2007]

Y. LeCun

Convolutional Sparse Auto-Encoder on Natural Images

Encoder Filters Decoder Filters Encoder Filters Decoder Filters

Filters and Basis Functions obtained. Linear decoder (conv)
with 1, 2, 4, 8, 16, 32, and 64 filters [Kavukcuoglu NIPS 2010]

Y. LeCun

Convolutional Sparse Auto-Encoder on Natural Images

Trained on CIFAR 10 (32x32 color images)
Architecture: Linear decoder, LISTA recurrent encoder

sparse codes (z) from encoder 9x9 decoder kernels

Learning a
Forward Model for
Autonomous Driving

Learning to predict what
others around you will do

Y. LeCun

A Forward Model of the World

Learning forward models for control
s[t+1] = g(s[t], a[t], z[t])

Classical optimal control: find a sequence of action that minimize the cost,
according to the predictions of the forward model

Y. LeCun

Planning/learning using a self-supervised predictive world model

Feed initial state
Run the forward
model
Backpropagate
gradient of cost
Act
(model-predictive
control)

or

Use the gradient to
train a policy network.
Iterate

Y. LeCun

Using Forward Models to Plan (and to learn to drive)

Overhead camera on
highway.
Vehicles are tracked

A “state” is a pixel
representation of a
rectangular window
centered around each
car.
Forward model is
trained to predict how
every car moves relative
to the central car.
steering and acceleration
are computed

Video Prediction: inference

After training:
Observe frames

Compute h

Sample z

Predict next frame

Pred(x)

y

y

Dec(z,h)

C(y,y)

z

 R(z)

h

x

Video Prediction: training

Training:
Observe frames

Compute h

Predict from
encoder

Sample z, with:

Predict next frame

backprop

 +

Pred(x)

y

x y

Dec(z,h)

h

C(y,y)

z R(z)

Enc(y,h)

D(z,z)

z

z̄

z̄

P(z / z̄)∝exp [−β(D(z , z̄)+R(z))]

Y. LeCun

Actual, Deterministic, VAE+Dropout Predictor/encoder

Y. LeCun

Cost optimized for Planning & Policy Learning

Differentiable cost function
Increases as car deviates from lane

Increases as car gets too close to other
cars nearby in a speed-dependent way

Uncertainty cost:
Increases when the costs from multiple
predictions (obtained through sampling
of drop-out) have high variance.

Prevents the system from exploring
unknown/unpredictable configurations
that may have low cost.

Y. LeCun

Learning to Drive by Simulating it in your Head

Feed initial state
Sample latent variable
sequences of length 20
Run the forward model
with these sequences
Backpropagate gradient of
cost to train a policy
network.
Iterate

No need for planning at
run time.

Y. LeCun

Adding an Uncertainty Cost (doesn’t work without it)

Estimates epistemic
uncertainty
Samples multiple drop-
puts in forward model
Computes variance of
predictions
(differentiably)
Train the policy network
to minimize the
lane&proximity cost plus
the uncertainty cost.
Avoids unpredictable
outcomes

Y. LeCun

Driving an Invisible Car in “Real” Traffic

Y. LeCun

Driving!

Yellow: real car
Blue: bot-driven car

Y. LeCun

Driving!

Yellow: real car
Blue: bot-driven car

Y. LeCun

Take-Home Messages

SSL is the future
Hierarchical feature learning for low-resource tasks

Hierarchical feature learning for massive networks

Learning Forward Models for Model-Based Control/RL

My money is on:
Energy-Based Approaches

Latent-variable models to handle multimodality

Regularized Latent Variable models

Sparse Latent Variable Models

Latent Variable Prediction through a Trainable Encoder

Y. LeCun

Speculations

Spiking Neural Nets, and neuromorphic architectures?
I’m skeptical…..

No spike-based NN comes close to state of the art on practical tasks

Why build chips for algorithms that don’t work?

Exotic technologies?
Resistor/Memristor matrices, and other analog implementations?

Conversion to and from digital kills us.

No possibility of hardware multiplexing

Spintronics?

Optical implementations?

 Thank You!

	Slide 1
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 60
	Slide 61
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 68
	Slide 69
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 101
	Slide 102

