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Tractable probabilistic models possess a set of traits that make them ideal for 
embedded sensory applications:

-Robustness to missing data allows them to cope with sensor failure.
-Small data needs allow them to adapt to different users quickly.
-Tractability enables reliable and efficient inference under constrained resources.

Arithmetic Circuits are one of those tractable representations [Darwiche2009]:
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But current tractability notions disregard hardware-implementation details 
and are given in abstract tems such as time and space. Recently proposed 
hardware-aware probabilistic frameworks address these limitations 
by explicitely encoding hardware properties in the model. 

 For example, [Galindez2019] proposes the Hardware-aware 
cost, given in terms of relative energy consumption.

Tractable probabilistic models Hardware-aware cost
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Discriminative-generative case: relation between features and class are explicit 

The framework relies on a sequence of greedy searches that scale each system property individually. It 
also accomodates density estimation tasks and classification tasks, as well of different AC learning 
strategies. Moreover, ACs allow to encode logical constraints, which we exploit to add a discriminative bias 
to the otherwise generative model learning procedure [Liang2017].

Framework

The notion of hardware-aware cost allows 
us to map the device's configuration, into 
a common resource vs. performance 
trade-off space.
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Experiments on a Human Activity Recognition (HAR) benchmark show 
significant cost savings with minimal accuracy loss. Moreover, the 
discriminative approach attains higher accuracy than the purely 
generative one.

Experiments on standard density 
estimation benchmarks show that the 
framework in [NeurIPS2019] can benefit 
tasks other than classification.


