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Outline

• Introduction of Low Power Deep Learning

• Applications That Need Low Power Deep Learning

– Health care monitoring

– Biomedical image analysis

– Image Based Phenotyping
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Deep Learning “Requirements”

Reference: S. Bianco, et al., Benchmark Analysis of Representative Deep Neural Network Architectures, 
IEEE Access, 2018
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Low Power Deep Learning

• Current deep learning models are both power and 
memory intensive

• Need more analysis of computational cost (memory 
usage, inference time)
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After training...
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Images Per Second  vs. Accuracy

Reference: S. Bianco, et al., Benchmark Analysis of Representative Deep Neural Network Architectures, 
IEEE Access, 2018

• Less computation hurts the performance 
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Inference Speed on Embedded System

Nvidia Titan X with 3840 cores
(Power consumption is approximately 250w)

Nvidia Jetson TX1 board with 256 cores
(Power consumption is approximately 10w)

Reference: S. Bianco, et al., Benchmark Analysis of Representative Deep Neural Network Architectures, 
IEEE Access, 2018
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Inference Speed on Non-GPU Device

Reference: D. Velasco-Montero, et al., Performance analysis of real-time DNN inference on Raspberry Pi, 
SPIE Real-Time Image and Video Processing 2018

• Frame per second on Raspberry Pi
• Power consumption is approximately 6w
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Methods for Reducing the Complexity 
of Deep Learning Models

• Pruning
– Weight pruning: make the model weights sparse
– Structure pruning: remove the filter directly

• Knowledge Distillation
– Use teacher model to guide
smaller student model
– Student model is used for inferencing

• Quantization
– Use less precision for model weights

• Adversarial  attacks and brittleness?
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Applications That Need Low 
Power Deep Learning

• Health care monitoring

• Biomedical image analysis

• Image Based Phenotyping
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www.tadaproject.org
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Health Care Monitoring

• In 2015, the world spent $7.7 trillion on healthcare

• 6 out of 10 leading causes of death in US are related to 
diet (e.g., cancer, diabetes)

• Understanding the dietary patterns behind these causes 
is of great importance



NeurIPS/VIPER December 13, 2019          16

Technology Assisted Dietary 
Assessment (TADA)

• Traditional methods of tracking diet are inaccurate and 
labor-intensive

– Consists of self-reporting and record keeping

• In recent years, researchers have leveraged mobile 
phones and the Internet to collect images of food

• These images are analyzed to extract nutritional 
information to monitor a person’s diet
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Meal Image

Locate &
Identify

Peach Ketchup Coke Milk

Hamburger French Fries Sugar Cookie
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User Studies

• We have completed a total of more than 50 user studies
– Free-living environment
– More than 5000 participants
– More than 400,000 images acquired

• Each food image captures a real eating scene consists of
multiple food items
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TADA Image Analysis System

Image +
Metadata
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Faster RCNN
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Trained 
CNN
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Food Segmentation 
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Supervised 
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TADA Image Analysis
Deep Learning Approach

Food
Localization

Food 
Classification

Food
Segmentation

milk

pancakesausage

Original Image

milk

sausage pancake
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Need for Low Power Computing

• Our system is built on a cloud-based approach

• The relevant processing happens on a remote machine 
and real-time feedback to the user is difficult

• If a similarly performing system could be operated on 
commonly used mobile phones, the user could take more 
direct control of their diet and how it interacts with other 
factors
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Image Based Phenotyping
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Definitions

• Phenotype:
“any measurable characteristic or trait of a plant, and a 
result of combination of genes, environmental influence, 
and their interactions”  or

“quantitative description of the plant’s anatomical, 
ontogenetical, physiological and biochemical properties”

• Phenotyping:
“characterizing the performance of the plants for desired 
trait(s)”
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Traits
• Some traits measured when phenotyping:

– Color
– Height
– Architecture (shape)
– Canopy temperature
– Canopy aperture
– Water/nitrogen use efficiency
– Number of leafs
– Total leaf area
– Grain yield
– Fluorescence intensity
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Traditional and Modern Phenotyping

Traditional plant 
phenotyping

Automated
phenotyping in the field

UAV imagery
data
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Sensor Platforms

• Images are acquired from drones and the Phenorover

RGB LiDAR APX-15
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Image Analysis System

Plot 
Extraction

Inverse 
Mapping

Traits Analysis
(e. g., plant count, 

plant location, 
leaf count)

Visualization
of Traits

Orthophoto 
Generation

Traits
Per Plant or Plot

Subrows
(Original Resolution)

Subrows
(Coordinates 
Of Vertices)

Orthophoto



NeurIPS/VIPER December 13, 2019          30

Orthophoto

Example of a fully rectified image of the entire field
(orthomosaic)

07/15/2015
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Counting Plants
With Deep Learning
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Dataset
1,240 cigars ⇒ 1,240 images

• We extract one-row plots with our plot extraction tool

06/21/2016
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Plant Location Using
Fully Convolutional Networks

• A Fully Convolutional Network (FCN) is
any network that only contains convolutional layers

• This means the output of the FCN is another image

• The architecture of a FCN can be designed such that 
the output is of the same size as the input

• This is used in U-Net, a popular FCN architecture,
to perform pixelwise segmentation

FCN Image
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FCN Architecture

• It accepts images of any size (bigger than 256x256)

𝒑𝒑𝒙𝒙
(Probability Map)

�𝒀𝒀
(Plant Count

Estimate)

Gaussian 
Mixture Model

�𝒀𝒀
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Cost Function For Plant Location 

• The 𝒍𝒍𝟏𝟏 norm does not work well for localization tasks

• Let 𝑿𝑿 = {𝒙𝒙𝟏𝟏, … ,𝒙𝒙|�𝒀𝒀|} be the set of ground truth points, and
let 𝒀𝒀 = {𝒚𝒚𝟏𝟏, … ,𝒚𝒚|𝒀𝒀|} be the set of estimated locations

• A metric that measures the similarity between 𝑿𝑿 and 𝒀𝒀 is
the Hausdorff Distance:

𝒅𝒅𝑯𝑯 𝑿𝑿,𝒀𝒀 = max{max
𝑥𝑥∈𝑋𝑋

min
𝑦𝑦∈𝑌𝑌

𝑑𝑑(𝑥𝑥,𝑦𝑦) , max
𝑦𝑦∈𝑌𝑌

min
𝑥𝑥∈𝑋𝑋

𝑑𝑑(𝑥𝑥,𝑦𝑦)}

𝑑𝑑𝐻𝐻 𝑋𝑋,𝑌𝑌 = 𝑑𝑑(𝑥𝑥4,𝑦𝑦2)
𝑥𝑥1

𝑦𝑦1
𝑦𝑦2

𝑦𝑦3
𝑦𝑦4

𝑥𝑥2 𝑥𝑥3

𝑥𝑥4

𝑥𝑥5
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Plant Location Cost Function 

• In fact, our cost metric is a little more complicated
to deemphasize outliers and make it differentiable
with respect to the output of the FCN, 𝒑𝒑 ∈ 0, 1 :

𝑑𝑑𝑊𝑊𝑊𝑊 𝑝𝑝,𝑌𝑌 = 1
∑𝑥𝑥∈Ω 𝑝𝑝𝑥𝑥

∑𝑥𝑥∈Ω 𝑝𝑝𝑥𝑥 min
𝑦𝑦∈𝑌𝑌

𝑑𝑑(𝑥𝑥,𝑦𝑦) +

1
𝑌𝑌
∑𝑥𝑥∈Ωmin

𝑥𝑥∈Ω
𝑑𝑑(𝑥𝑥,𝑦𝑦)
𝑝𝑝𝑥𝑥𝛼𝛼

• The parameter 𝜶𝜶 balances precision and recall
• This is similar to the Average Hausdorff Distance

𝑑𝑑𝐴𝐴𝐻𝐻 𝑋𝑋,𝑌𝑌 = 1
𝑋𝑋
∑𝑥𝑥∈𝑋𝑋 min

𝑦𝑦∈𝑌𝑌
𝑑𝑑(𝑥𝑥,𝑦𝑦) + 1

𝑌𝑌
∑𝑦𝑦∈𝑌𝑌 min

𝑥𝑥∈𝑋𝑋
𝑑𝑑(𝑥𝑥,𝑦𝑦)



NeurIPS/VIPER December 13, 2019          37

Results (Metrics)
• We report the following metrics in 𝟐𝟐𝟐𝟐𝟐𝟐 × 𝟐𝟐𝟐𝟐𝟐𝟐 images

– Accuracy (% of estimations at ≤ 𝒓𝒓 pixels to a plant)
– Average Hausdorff Distance
– Mean Average Percent Error

C
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Regression Term

• We modified the regression term in our cost function

𝑑𝑑𝑊𝑊𝑊𝑊𝑊𝑊 𝑝𝑝,𝑌𝑌 =
1

∑𝑥𝑥∈Ω 𝑝𝑝𝑥𝑥
�
𝑥𝑥∈Ω

𝑝𝑝𝑥𝑥 min
𝑦𝑦∈𝑌𝑌

𝑑𝑑(𝑥𝑥, 𝑦𝑦) +
1
𝑌𝑌

�
𝑥𝑥∈Ω

min
𝑥𝑥∈Ω

𝑑𝑑(𝑥𝑥,𝑦𝑦)
𝑝𝑝𝑥𝑥𝛼𝛼

+ 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟( �𝑌𝑌 − 𝑌𝑌 )

– We use Huber loss (also known as smooth L1)

– Advantages:
Differentiable at the origin, and
does not over-penalize outliers

• We achieved an F-score: 93 % (at 5cm of error)
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Results: 2016 Data

Estimated plant centers (in red)
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Results: 2017 Data

• Trained our model using ground truth
of the Inbred Calibration Panel by Neal Carpenter

• Mean Average Percent Error: 12%
• Mean Average Error:

2.6 plants per row
• F-score: 93 %

(at 5cm error)

Testing results on the 
Hybrid Calibration 
Panel (2017/06/09)
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Need for Low Power Computing

• End-users may not have the computational resource for 
fast inferencing 

• Need for re-training

• Farmers need portable devices to get the results 

• Edge-based computing is needed in this situation 
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