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The Video and Image Processing Laboratory (VIPER), directed by Professor Edward J. Delp, is
equipped with state-of-the-art technology to digitize, store, process, stream, and display digital
images and video. VIPER supports research in areas such as the development of new image analysis
techniques, new image and video compression methods, the development of new surveillance and
detection methods, new media and wireless streaming technologies, and creating multimedia material
for use in media indexing, storage, and retrieval.

Depending on the application, digitizers in the laboratory can produce digital video in a variety of
formats including uncompressed CCIR video, motion JPEG, DV, MPEG-1, MPEG-2, MPEG-4,
H.26X, and HDTV. Several high quality image scanners are available to support digital image
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Outline

 Introduction of Low Power Deep Learning

» Applications That Need Low Power Deep Learning
— Health care monitoring
— Biomedical image analysis

— Image Based Phenotyping
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Deep Learning “Requirements”

Reference: S. Bianco, et al., Benchmark Analysis of Representative Deep Neural Network Architectures,

IEEE Access, 2018
NeurlPS/VIPER
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LLow Power Deep Learning

e Current deep learning models are both power and
memory intensive

* Need more analysis of computational cost (memory
usage, inference time)
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After training...
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Images Per Second vs. Accuracy

 Less computation hurts the performance

Reference: S. Bianco, et al., Benchmark Analysis of Representative Deep Neural Network Architectures,

IEEE Access, 2018
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Inference Speed on Embedded System
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Images per second [FPS]

Nvidia Titan X with 3840 cores

(Power consumption is approximately 250w)

Reference: S. Bianco, et al., Benchmark Analysis of Representative Deep Neural Network Architectures,

IEEE Access, 2018
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Images per second [FPS]

Nvidia Jetson TX1 board with 256 cores
(Power consumption is approximately 10w)
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Inference Speed on Non-GPU Device

e Frame per second on Raspberry Pi
« Power consumption is approximately 6w
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Reference: D. Velasco-Montero, et al., Performance analysis of real-time DNN inference on Raspberry Pi,
SPIE Real-Time Image and Video Processing 2018
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Methods for Reducing the Complexity
of Deep Learning Models

Pruning
— Weight pruning: make the model weights sparse
— Structure pruning: remove the filter directly
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smaller student model

— Student model is used for inferencing =i |
Quantization

— Use less precision for model weights
Adversarial attacks and brittleness?
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Applications That Need Low
Power Deep Learning

e Health care monitoring
« Biomedical image analysis

* Image Based Phenotyping
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TADHS

HODADAT00111010101010110100100101100101

technology assisted
dietary assessment

www.tadaproject.org
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Health Care Monitoring

In 2015, the world spent $7.7 trillion on healthcare

6 out of 10 leading causes of death in US are related to
diet (e.g., cancer, diabetes)

o Understanding the dietary patterns behind these causes
IS of great importance

pu
%¢-
D
S qILE
Q"@a’at"o

NeurlPS/VIPER December 13, 2019 15



Technology Assisted Dietary
Assessment (TADA)

« Traditional methods of tracking diet are inaccurate and
labor-intensive

— Consists of self-reporting and record keeping

* In recent years, researchers have leveraged mobile
phones and the Internet to collect images of food

* These images are analyzed to extract nutritional
Information to monitor a person’s diet
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User Studies

* We have completed a total of more than 50 user studies
— Free-living environment
— More than 5000 participants
— More than 400,000 images acquired

« Each food image captures a real eating scene consists of
multiple food items

NeurlPS/VIPER December 13, 2019 18



TADA System Overview
Image(s) + Metadata
(Geolocation, Time, Barcode, Contextual Info)

Cloud

- Food Label Type .
- Segmented Image f““"“ '
- Machine Learning [
- Context Processing i
- User Eating Patterns

Volume
Estimatio

Communication

LaYer Web Server
v

TADA Food Databases

- Labeled Images With Food
Type (e.g. Milk, Toast, Eggs)

- ———

Wi-Fi/3G/4G/5G Network

User Feedback
(Confirmation
or Correction)

Researchers,
Practitioners
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Image +
Metadata

TADA Image Analysis System

Food Localization
Faster RCNN

Portion Size
Estimation

<

Energy and
Nutrients
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TADA Image Analysis
Deep Learning Approach

Food

Food
Classification

Localization

Original Image

milk'_.__: - Food
s Ty Segmentation

sausage pancake
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Need for Low Power Computing
e Our system is built on a cloud-based approach

* The relevant processing happens on a remote machine
and real-time feedback to the user is difficult

 |If asimilarly performing system could be operated on
commonly used mobile phones, the user could take more
direct control of their diet and how it interacts with other
factors

2
W ARy
NeurlPS/VIPER December 13, 2019 22 &



Image Based Phenotyping
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Definitions

* Phenotype:
“any measurable characteristic or trait of a plant, and a
result of combination of genes, environmental influence,
and their interactions” or

“guantitative description of the plant’s anatomical,
ontogenetical, physiological and biochemical properties”

* Phenotyping:
“characterizing the performance of the plants for desired
trait(s)”
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Traits

e Some traits measured when phenotyping:
— Color
— Height
— Architecture (shape)
— Canopy temperature
— Canopy aperture
— Water/nitrogen use efficiency
— Number of leafs
— Total leaf area
— Grain yield
— Fluorescence intensity
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Traditional and Modern Phenotyping

Traditional plant Automated UAV imagery
- c c . 0€ 4y,
phenotyping phenotyping in the field data S P
5=
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Sensor Platforms

e Images are acquired from drones and the Phenorover
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Image Analysis System

Orthophoto Orthophoto ) Plot
Generation | Extraction
Subrows
Subrows (Coordinates
(Original Resolution) Inverse Of Vertices)
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Orthophoto
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Counting Plants
With Deep Learning
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Dataset

1,240 cigars = 1,240 images

06/21/2016

* We extract one-row plots with our plot extraction tool
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Plant Location Using
Fully Convolutional Networks

A Fully Convolutional Network (FCN) is
any network that only contains convolutional layers

e This means the output of the FCN is another image

FCN Image ,

e The architecture of a FCN can be designed such that
the output is of the same size as the input

o Thisis used in U-Net, a popular FCN architecture,
to perform pixelwise segmentation
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FCN Architecture
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o |t accepts images of any size (bigger than 256x256)

2=y
Y B
NeurlPS/VIPER December 13, 2019 34 ﬁ,,s



Cost Function For Plant Location

e The l; norm does not work well for localization tasks

* LetX = {x4,..,xp} be the set of ground truth points, and
letY = {y4, ..., ¥y} be the set of estimated locations

* A metric that measures the similarity between X and Y is
the Hausdorff Distance:

dy (X,Y) = max{max mind(x,y), max min d(x,y)}

@Xs %1 dy(X,Y) = d(x4,¥3)

y \.‘
V1 ? X4
x?, ey
2 & o 2,
$ Fs
Ya Y &p
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Plant Location Cost Function

e In fact, our cost metric is a little more complicated
to deemphasize outliers and make it differentiable
with respect to the output of the FCN, p € [0, 1]:

1 :
dwy (p,Y) = 5— DixeaPx Mind(x, y) +

erﬂ DPx

1 . d(x,y)

— min
Y| 2xeq xeQ p&

« The parameter a balances precision and recall
* This is similar to the Average Hausdorff Distance

1 : L i
diy (X,Y) = merx r;lellr) d(x,y) + mzer min d(x,y) o

[ A
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Results (Metrics)

 We report the following metrics in 256 X 256 images
— Accuracy (% of estimations at < r pixels to a plant)
— Average Hausdorff Distance

X—C
— Mean Average Percent Error MAPE= 100‘ ‘
90% i
S Metric
& AHD 8.8 px
3 MAPE 4 %
(&)
<E 20
0 . . . . . | . O a'é,
0 2 4 5 6 8 10 12 14 Ué, :%
r (pixels) NS
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Regression Term

* We modified the regression term in our cost function

dywup (0, Y) = - Zp minal(xy)+i minM+L (7| =1¥D
WHD ) erﬂpx L xyey ) |Y| L YeQ p}ccz reg

— We use Huber loss (also known as smooth L1)

0.522 for|x| < 1
Lioo() = ’
reg( ) {I _ 05, fOI"fL" > 1

— Advantuye..
Differentiable at the origin, and
does not over-penalize outliers

* We achieved an F-score: 93 % (at 5¢cm of error)
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Results: 2016 Data

Estimated plant centers (in red)
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Results: 2017 Data

Trained our model using ground truth
of the Inbred Calibration Panel by Neal Carpenter

Mean Average Percent Error: 12%

Mean Average Error:
2.6 plants per row

F-score: 93 %
(at 5¢cm error)

NeurlPS/VIPER December 13, 2019

Testing results on the
Hybrid Calibration
Panel (2017/06/09)



Need for Low Power Computing

End-users may not have the computational resource for
fast inferencing

Need for re-training

Farmers need portable devices to get the results

Edge-based computing is needed in this situation
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