Qualcomm

June 23, 2019

Phoenix, AZ

# Quantization without fine-tuning

Harris Teague Principal Engineer Qualcomm Al Research

m Al Research is an initiative of Qualcomm Technologies, Inc

#### Qualcom

A leader in mobile innovation for over 30 years

Transforming how the world connects, computes and communicates



This is the age where Al can live in your hand instead of the cloud

San Diego Zoo

<sup>☆</sup>75°

Elephant

Lifespan: 48 years Height: 2.75 m (9.0 ft) Weight: 4 tons

**Elephas maximus** 

Diet: Grass, small plants, bushes, fruit, twigs, tree bark, and roots



## **Pioneering on-device intelligence**

Qualcomm AI Engine is a product of Qualcomm Technologies Inc. and/or its subsidiaries.

#### Quantization

Quantization is the most effective way of improving

- Power Consumption
- Latency
- Memory usage
- Area needed

Per hour of sweat spent

8bit everything would be preferable

M. Horowitz, "Computing's energy problem (and what we can do about it)", *ISSCC '14*, pp. 10-14.

Energy based on ASIC | Area based on TSMC45nm

| Memory | Energy<br>(pJ) |
|--------|----------------|
| Cache  | (64bit)        |
| 8KB    | 10             |
| 32KB   | 20             |
| 1MB    | 100            |
| DRAM   | 1300-2600      |

| Operation             | Energy<br>(pJ) | Area<br>(µm²) |
|-----------------------|----------------|---------------|
| int8 addition         | 0.03           | 36            |
| int16 addition        | 0.05           | 67            |
| int32 addition        | 0.1            | 137           |
| float16 addition      | 0.4            | 1,360         |
| float32 addition      | 0.9            | 4,184         |
| int8 multiplication   | 0.2            | 282           |
| int32multiplication   | 3.1            | 3,495         |
| float16multiplication | 1.1            | 1,640         |
| float32multiplication | 3.7            | 7,700         |

#### 8-bit solutions in practice



In decreasing order of practicality for many users/customers

### Is every model 8-bit quantizable?

| Model        | Top1 accuracy | Top1 quantized |
|--------------|---------------|----------------|
| InceptionV3  | 0.78          | 0.78           |
| NasnetMobile | 0.74          | 0.722          |
| Resnet 50    | 0.756         | 0.75           |
| MobileNetV2  | 0.749         | 0.004          |

Imagenet - INT8 Asymmetric quantization weights+activations. No fine-tuning.

Selecting [min, max] based on data

Methods exist to increase performance, but they rely on architecture changes/fine-tuning

### Better methods for quantization without fine-tuning



Markus Nagel



Mart van Baalen



Tijmen Blankevoort



Max Welling

- Developed methods for quantization without use of data
- Excellent hassle-free quantization results without needing any training

#### Problem 1: Imbalance in weight ranges per output



We've seen large difference in the ranges for each output of a layer

Large quantization grids decrease performance for the smaller ranges catastrophically

Per-channel quantization [1] solves this problem, but not supported on all hardware

[1] Krishnamoorthi 2018. Quantizing deep convolutional networks for efficient inference: A whitepaper

### Cross-layer equalization (CLE) procedure



If  $r_i^{(j)}$  is the range of layer j, for output/input I, we can scale as follows to optimize:

$$s_i = \frac{1}{r_i} \sqrt{\left(r_i^{(1)} r_i^{(2)}\right)}$$

- Works for networks with (P)ReLU activations
- Balance out the scaling factors between any layers that are 'simply connected' by scaling

For residual blocks we only scale the layers in a block

Method also proposed by [1], work done concurrently

[1] Meller et al. 2019. Same, Same but Different - Recovering Neural Network Quantization Error through weight factorization

#### **Bias absorption**

We can decrease large activation ranges by moving some of the range to the next layer



Consider one output activation for a Layer:

relu(Wx + b)Where the activations are always minimally *c* (*c* is minimally 0) For *r* the ReLU function we have

$$r(Wx + b - c) = r(Wx + b) - c$$

We move c from layer 1, and include it in the bias of the next layer 2.

This procedure generally helps performance after equalization

#### Problem 2: Quantization introduces biased error



Illustrative example



- Quantization could lead to a biased error:
  E[y] E[ỹ] ≠ 0
- Biased error's effects are more detrimental to the network compared to the same magnitude of unbiased error.
- A biased error can also be introduced by clipping weights/activations (Sometimes inadvertently because of wrong ranges!)

#### Solve with bias correction

Given W a weight matrix, and a quantized approximation  $\widetilde{W}$  we can write  $W = \widetilde{W} + \epsilon$ 

The bias of an output is given as  $\mathbb{E}[y] - \mathbb{E}[\widetilde{y}] = \epsilon \mathbb{E}[x]$ 

Key idea: Bias correction

We find  $\epsilon \mathbb{E}[x]$  and subtract it from the output after quantization to correct for the bias effect!

Finding  $\mathbb{E}[x]$ 

• With Data:

Simply calculate  $\mathbb{E}[y] - \mathbb{E}[\widetilde{y}]$ 

• Without Data:

We can use Batch-Normalization statistics!

$$\begin{array}{c} \bullet \\ \bullet \\ 1 \end{array} \xrightarrow{\text{Conv/}} 1 \xrightarrow{\text{Batch}} 1 \xrightarrow{\text{ReLU}} 1 \xrightarrow{x_2} \xrightarrow{\text{Conv/}} 1 \xrightarrow{x_2} \xrightarrow{x_2$$

This gives us:

$$\mathbb{E}[x_2] = \gamma \mathcal{N}\left(\frac{-\beta}{\gamma}\right) + \beta [1 - \Phi(\frac{-\beta}{\gamma})]$$

Where  $\mathcal{N}(x)$  is used to denote the normal  $\mathcal{N}(x|0,1)$ PDF and  $\Phi(x)$  the normal CDF

#### Dataless activation range setting

Models are sensitive to proper activation range setting

Mistakes with range setting on data are the same as clipping activations, which has strong detrimental effects

#### Solution

We set the activation ranges to  $6\sigma$  based on the batch normalization parameters

| Mobilenet V1 -<br>Imagenet | INT8 - top 1 acc |
|----------------------------|------------------|
| DFQ                        | 70.24%           |
| + act $4\sigma$            | 70.30%           |
| + act $5\sigma$            | 70.36%           |
| + act $6\sigma$            | 70.51%           |
| + act $7\sigma$            | 70.43%           |

Example of benefit of activation setting

#### Data-Free quantization approach



Flow diagram of the data-free quantization method

Results reported henceforth as DFQ indicate the combination of both methods

No data was used anywhere.

Algorithms work well with data too!

#### Results

- All with INT8 weights/activations
- Asymmetric quantization
- 6 sigma activation ranges used for everything

### MobileNetV2 results

A significant amount of performance regained. Although not close to original, it shows that quantization error bias is definitely a problem

| Clipping hurts model              |
|-----------------------------------|
| performance significantly. In     |
| FP32 we regain a lot of lost      |
| accuracy. In INT8, Clipping +     |
| bias correction baseline is quite |
| strong. [-15,15] chosen           |
| arbitrarily                       |

|                           | Top1 Float32 | Top1 INT8 | Delta   |   |
|---------------------------|--------------|-----------|---------|---|
| Original Model            | 71.72%       | 0.12%     | -71.6%  |   |
| +Bias correction          | 71.72%       | 52.02%    | -20.7%  |   |
| Clip [-15,15]             | 67.06%       | 56.68%    | -15.04% |   |
| +Bias correction          | 71.15%       | 70.43%    | -1.29%  | × |
| Equalization + Absorption | 71.57%       | 70.92%    | -0.8%   |   |
| + Bias correction         | 71.57%       | 71.19%    | -0.53%  |   |
| + Bias correction /w data | 71.57%       | 71.41%    | -0.31%  |   |

Bias correction improves on top of CLE Data version: only -0.3% error degradation!

#### Imagenet results

~D - no data needed

<sup>~</sup>BP no backprop needed

~AC no architecture changes needed

|                   | $\sim D$     | $\sim BP$    | $\sim AC$    | Mobile | eNetV2 | Mobile | eNetV1 |       | ResNet18           |                    |
|-------------------|--------------|--------------|--------------|--------|--------|--------|--------|-------|--------------------|--------------------|
|                   |              |              |              | FP32   | INT8   | FP32   | INT8   | FP32  | INT8               | INT6               |
| DFQ (ours)        | $\checkmark$ | $\checkmark$ | $\checkmark$ | 71.7%  | 71.2%  | 70.8%  | 70.5%  | 69.7% | 69.7%              | 66.3%              |
| Per-layer [18]    | $\checkmark$ | $\checkmark$ | $\checkmark$ | 71.9%  | 0.1%   | 70.9%  | 0.1%   | 69.7% | 69.2%*             | 63.8%*             |
| Per-channel [18]  | $\checkmark$ | $\checkmark$ | $\checkmark$ | 71.9%  | 69.7%  | 70.9%  | 70.3%  | 69.7% | 69.6%*             | 67.5%*             |
| QT [16] ^         | ×            | X            | $\checkmark$ | 71.9%  | 70.9%  | 70.9%  | 70.0%  | -     | $70.3\%^{\dagger}$ | $67.3\%^{\dagger}$ |
| $SR+DR^{\dagger}$ | ×            | ×            | $\checkmark$ | -      | -      | -      | 71.3%  | -     | 68.2%              | 59.3%              |
| QMN [30]          | ×            | ×            | ×            | -      | -      | 70.8%  | 68.0%  | -     | -                  | -                  |
| RQ [21]           | ×            | ×            | ×            | -      | -      | -      | 70.4%  | -     | 69.9%              | 68.6%              |

Per-channel is Krishnamoorthi 2018 QT is Jacob et al. 2017 SR+DR is stochastic rounding + dynamic ranges (Louizos et al. 2019) QMN is Qualcomm mobilenet architecture (Sheng et al. 2018) RQ is Relaxed quantization (Louizos et al. 2019)

#### Other CV tasks

| DeepLab V3       | mloU<br>Float32 | mloU INT8 | Delta  |
|------------------|-----------------|-----------|--------|
| Asymmetric quant | 72.94           | 41.4      | -31.54 |
| DFQ              | 72.45           | 72.33     | -0.12  |
| Per-channel      | 72.94           | 71.44     | -1.5   |

Semantic Segmentation – DeeplabV3+ MobilenetV2 backend. Pascal VOC

| Mobilenet-SSD    | mAP<br>Float32 | map INT8 | Delta  |
|------------------|----------------|----------|--------|
| Asymmetric quant | 68.47          | 10.63    | -57.84 |
| DFQ              | 68.56          | 67.91    | -0.56  |
| Per-channel      | 68.47          | 67.52    | -0.95  |

Object detection MobilenetV2 SSD-lite Pascal VOC

### Conclusion

- Applying DFQ procedure gives equal or better performance compared to per-channel quantization. Per-tensor quantization can be used instead.
- Fully data-free approach works just as well as methods that finetune or train from scratch.
- Works for any convolutional architecture.
- Method is very simple to apply, single API call. Can always be tried!

Paper available on Arxiv:

Data-Free Quantization through Weight Equalization and Bias Correction

https://arxiv.org/abs/1906.04721

Go forth and quantize!

Qualcom

## Thank you

#### Follow us on: **f 🎔 in** 🞯

For more information, visit us at: www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2018-2019 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names may be trademarks or registered trademarks of their respective owners. References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes Qualcomm's licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, all of Qualcomm's engineering, research and development functions, and all of its product and services businesses, including its semiconductor business, QCT.