
Quantization 
without fine-tuning
Harris Teague

Principal Engineer

Qualcomm AI Research

June 23, 2019 Phoenix, AZ

Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc



Transforming how the world connects, 

computes and communicates

A leader in 
mobile innovation 
for over 30 years



This is the age where
AI can live in your hand
instead of the cloud



Mobile

Extended 
reality (XR)

Computing

IP Cameras

Automotive

Audio

Drones

Robotics
Qualcomm® AI Engine

Pioneering on-device intelligence
Qualcomm AI Engine is a product of Qualcomm Technologies Inc. and/or its subsidiaries.



Quantization

Operation
Energy 

(pJ)

Area 

(μm2)

int8 addition 0.03 36

int16 addition 0.05 67

int32 addition 0.1 137

float16 addition 0.4 1,360

float32 addition 0.9 4,184

int8 multiplication 0.2 282

int32multiplication 3.1 3,495

float16multiplication 1.1 1,640

float32multiplication 3.7 7,700

M. Horowitz, "Computing's energy problem (and 
what we can do about it)", ISSCC '14, pp. 10-14.

Energy based on ASIC | Area based on TSMC45nm

Memory
Energy 

(pJ)

Cache (64bit)

8KB 10

32KB 20

1MB 100

DRAM 1300-2600

Quantization is the most effective way of improving

- Power Consumption

- Latency

- Memory usage

- Area needed

Per hour of sweat spent

8bit everything would be preferable



8-bit solutions in practice

• No data

• No backpropagation

• No architecture 

changes

Level 1

• Data needed

• No backpropagation

• No architecture 

changes

Level 2

• Data needed

• Backpropagation

• No architecture 

changes

Level 3

• Data needed

• Backpropagation

• Architecture 

changes

Level 4

In decreasing order of practicality for many users/customers



Is every model 8-bit quantizable?

Model Top1 accuracy Top1 quantized

InceptionV3 0.78 0.78

NasnetMobile 0.74 0.722

Resnet 50 0.756 0.75

MobileNetV2 0.749 0.004

Imagenet – INT8 Asymmetric quantization 
weights+activations. No fine-tuning.

Selecting [min, max] based on data

Methods exist to increase 
performance, but they rely on 

architecture changes/fine-tuning

Results from Jacob et al. 2018 Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only inference



Better methods for quantization without fine-tuning

Tijmen 
Blankevoort

Max Welling

• Developed methods for quantization 
without use of data

• Excellent hassle-free quantization 
results without needing any training

Markus Nagel Mart van Baalen



Problem 1: Imbalance in weight ranges per output 

We’ve seen large difference in 
the ranges for each output of a 
layer

Large quantization grids 
decrease performance for the 
smaller ranges catastrophically

Per-channel quantization [1] 
solves this problem, but not 
supported on all hardware

Distributions of weights in 2nd layer of 
MobileNetV2 (Imagenet)

[1] Krishnamoorthi 2018. Quantizing deep convolutional networks for efficient inference: A whitepaper



Cross-layer equalization (CLE) procedure

Output channel 𝑐𝑖 Input channel channel 𝑑𝑖

Layer 1 Layer 2𝑐𝑖/𝑠

𝑑𝑖 ⋅ 𝑠

• Works for networks with (P)ReLU
activations

• Balance out the scaling factors 
between any layers that are ‘simply 
connected’ by scaling

If 𝑟𝑖
(𝑗)

is the range of layer j, for output/input I, 

we can scale as follows to optimize:

𝑠𝑖 =
1

𝑟𝑖
𝑟𝑖
1
𝑟𝑖
2

For residual blocks we only scale the 
layers in a block

Method also proposed by [1], work done 
concurrently

[1] Meller et al. 2019. Same, Same but Different – Recovering Neural Network Quantization Error through weight factorization



Bias absorption

We can decrease large activation ranges by 
moving some of the range to the next layer

Consider one output activation for a 
Layer:

𝑟𝑒𝑙𝑢(𝑾𝒙 + 𝒃)
Where the activations are always minimally 𝒄
(𝑐 is minimally 0) 

𝑐

For 𝑟 the ReLU function we have

𝑟 𝑾𝒙 + 𝒃 − 𝒄 = 𝑟 𝑾𝒙 + 𝒃 − 𝒄

We move c from layer 1, and include it in the bias 
of the next layer 2. 

This procedure generally helps performance after 
equalization



Problem 2: Quantization introduces biased error

• Quantization could lead to a biased error: 

𝔼 𝑦 − 𝔼 ෤𝑦 ≠ 0

• Biased error’s effects are more detrimental to 

the network compared to the same magnitude 

of unbiased error. 

• A biased error can also be introduced by 

clipping weights/activations (Sometimes 

inadvertently because of wrong ranges!)

Illustrative example 

-0.1 -0.2 -0.1

-0.1 0.1 0.2

0.1 -0.2 -0.1

𝐾𝑒𝑟𝑛𝑒𝑙 = ෍

𝑖

𝐾𝑖 = −0.4



Solve with bias correction

Given 𝑾 a weight matrix, and a quantized 
approximation ෩𝑊 we can write 

𝑾 = ෪𝑾+ 𝝐

The bias of an output is given as
𝔼 𝒚 − 𝔼 ෥𝒚 = 𝝐𝔼 𝒙

Finding 𝔼 𝑥

• With Data:

Simply calculate 𝔼 𝒚 − 𝔼 ෥𝒚

• Without Data:

We can use Batch-Normalization 
statistics!

Conv/

Linear

1

Batch 

Norm

1

ReLU

1

Conv/

Linear

2

𝑥2

This gives us:

𝔼 𝑥2 = 𝛾𝒩
−𝛽

𝛾
+ 𝛽[1 − Φ(

−𝛽

𝛾
)]

Where 𝒩(𝑥) is used to denote the normal 𝒩 𝑥 0,1
PDF and Φ(𝑥) the normal CDF

Key idea: Bias correction

We find 𝝐𝔼 𝒙 and subtract it from the output 
after quantization to correct for the bias effect!



Dataless activation range setting

Models are sensitive to proper activation range setting

Mistakes with range setting on data are the same as clipping 
activations, which has strong detrimental effects

Solution

We set the activation ranges to 6𝜎 based on the batch 
normalization parameters

Example of benefit of  
activation setting

Mobilenet V1 -

Imagenet

INT8 – top 1 acc

DFQ 70.24%

+ act 4𝜎 70.30%

+ act 5𝜎 70.36%

+ act 6𝜎 70.51%

+ act 7𝜎 70.43%



Data-Free quantization approach

Flow diagram of the data-free 
quantization method

Results reported henceforth as DFQ 
indicate the combination of both 

methods

No data was used anywhere.

Algorithms work well with data too!



Results

• All with INT8 weights/activations

• Asymmetric quantization

• 6 sigma activation ranges used for everything



MobileNetV2 results

Top1 Float32 Top1 INT8 Delta

Original Model 71.72% 0.12% -71.6%

+Bias correction 71.72% 52.02% -20.7%

Clip [-15,15] 67.06% 56.68% -15.04%

+Bias correction 71.15% 70.43% -1.29%

Equalization + Absorption 71.57% 70.92% -0.8%

+ Bias correction 71.57% 71.19% -0.53%

+ Bias correction /w data 71.57% 71.41% -0.31%

A significant amount of 
performance regained. Although 

not close to original, it shows 
that quantization error bias is 

definitely a problem

Clipping hurts model 
performance significantly. In 
FP32 we regain a lot of lost 

accuracy. In INT8, Clipping + 
bias correction baseline is quite 

strong. [-15,15] chosen 
arbitrarily

Bias correction improves on top of CLE

Data version: only -0.3% error degradation!



Imagenet results

~D – no data needed
~BP no backprop needed
~AC no architecture changes needed

Per-channel is Krishnamoorthi 2018
QT is Jacob et al. 2017
SR+DR is stochastic rounding + dynamic ranges (Louizos et al. 2019)
QMN is Qualcomm mobilenet architecture (Sheng et al. 2018)
RQ is Relaxed quantization (Louizos et al. 2019)



Other CV tasks

DeepLab V3 mIoU

Float32

mIoU INT8 Delta

Asymmetric quant 72.94 41.4 -31.54

DFQ 72.45 72.33 -0.12

Per-channel 72.94 71.44 -1.5

Semantic Segmentation –
DeeplabV3+ MobilenetV2 

backend. Pascal VOC

Mobilenet-SSD mAP

Float32

mAP INT8 Delta

Asymmetric quant 68.47 10.63 -57.84

DFQ 68.56 67.91 -0.56

Per-channel 68.47 67.52 -0.95

Object detection 
MobilenetV2 SSD-lite 

Pascal VOC



Conclusion

• Applying DFQ procedure gives equal or better performance 
compared to per-channel quantization. Per-tensor quantization can 
be used instead.

• Fully data-free approach works just as well as methods that fine-
tune or train from scratch.

• Works for any convolutional architecture.

• Method is very simple to apply, single API call. Can always be tried!

Paper available on Arxiv: 

Data-Free Quantization through Weight Equalization and Bias Correction

https://arxiv.org/abs/1906.04721

Go forth and quantize!

https://arxiv.org/abs/1906.04721
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