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Abstract
The tremendous impact of deep learning algorithms over a
wide range of application domains has encouraged a surge of
neural network (NN) accelerator research. Prior NN acceler-
ator research reveals that the software-hardware co-design
method is promising to achieve significant performance im-
provement and energy savings. To guide future co-designs,
an evolving benchmark suite and its associated benchmark
method are needed to characterize NN workloads and incor-
porate emerging NN compression techniques. However, the
co-design method has not been well covered by existing NN
benchmark work. In this paper, we propose a novel bench-
marking methodology, which decouples the benchmarking
process into three stages. First, we select the most represen-
tative applications from a user-customized candidate pool
by analyzing their performance features. Second, we com-
press selected applications according to customized model
compression techniques to generate a benchmark suite. Fi-
nally, we evaluate a variety of accelerator designs on the
generated benchmark suite. To demonstrate the effective-
ness of our benchmarking methodology, we conduct a case
study of designing a general NN benchmark from Tensor-
Flow Model Zoo and with various NN compression methods.
We finally evaluate the benchmark on various representative
architectures.

1 Introduction
Neural Network (NN) algorithms have demonstrated bet-
ter accuracy than other traditional machine learning algo-
rithms in a wide range of application domains, such as the
computer vision (CV) [3, 5, 6, 11, 14] and natural language
processing (NLP) [9, 12]. These breakthroughs indicate a
promising future for their real-world deployment. Deploy-
ing these applications, especially for the inference stage,
requires high performance under stringent power budgets,
which boosts the emergence of accelerator designs for these
applications. However, designing such an NN accelerator
using application specific integrated circuits (ASICs) is chal-
lenging because NN applications are changing rapidly to
support new functionalities and improve accuracies, while
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ASIC design requires a long design and manufacturing pe-
riod. The accelerator design could be prone to becoming
obsolete if the design fails to capture key characteristics of
emerging models. Therefore, a benchmark to capture these
workload characteristics is crucial to guiding NN accelerator
design.
There exists plenty of NN benchmark studies. Among

them, Fathom [1] and BenchIP [15] serve a similar purpose
as the benchmarks we target to generate, i.e., using a bench-
mark suite to guide the hardware design. However, existing
work will suffer from a few problems. First, the benchmark
suite is selected not by any quantitative analysis. Though
they justify their selection afterwards, there is a risk that
their suite is not the most representative collection. Second,
existing benchmarks are difficult to update or customize. It
is unclear if these benchmarks are still effective for emerging
algorithms. Also, they are designed for general purpose NN
accelerators. NN hardware specialized for a certain appli-
cation scenario (e.g., smart camera) would find it difficult
to adopt these benchmarks. Third, software-hardware co-
design methodology, i.e., NN model compression techniques,
such as quantization and pruning, has not been adequately
addressed.
In this paper we propose an end-to-end benchmarking

approach for software-hardware co-designs by decoupling
workload characterizations, software-level model compres-
sion strategies, and hardware-level accelerator evaluations.
Our approach consists of three stages. In the first stage, ap-
plication set selection, we characterize NN applications of in-
terests without considering any software optimization tech-
niques. After gathering their performance features, we select
representative applications for the original application set.
In the second stage, benchmark suite generation, users can
customize the final benchmark suite according to their model
compression strategies. New NNmodels for each application
in the original benchmark suite will be generated accord-
ing to software-level optimizations, such as quantizing and
pruning techniques. In the last stage, hardware evaluation,
users can provide the performance models of their accelera-
tor designs together with the assumptions of interconnection
and host. Accelerators are evaluated with the benchmark
suite generated from the second stage. Power, performance,
and area results are derived according to input architecture
models.

To demonstrate the rationality of our benchmark, we con-
duct a case study on designing NN accelerators for general
NN applications. For the first time, we analyze 57 models
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with 224,563 operators from the TensorFlow (TF) Model
Zoo [4].We generate benchmark suites by using several state-
of-the-art software-level optimizations including quantizing
and pruning NN models. Finally, we evaluate representa-
tive accelerators, including general purpose processors (CPU
and GPU), accelerator architecture (DianNao [2]), near-data-
processing architecture (Neurocube [8]), and sparse-aware
architecture (Cambricon-X [18]).

Our contributions can be summarized as follows.

• We propose a novel benchmarking method, which selects
the benchmark by analyzing a user-input candidate ap-
plication pool, and covers software-hardware co-design
configurations with high flexibility.

• We show a case study of generating a general purpose NN
benchmark suite from the TF Model Zoo while applying
state-of-the-art software-hardware co-designs methods,
and evaluate it on representative architectures.

• We reveals insightful architecture design guidelines through
our case study from the extensive profiling and analysis
of a large group of NN models (57 models with 224,563
operators from the TF Model Zoo).

The rest of this paper is organized as follows. Section 2
justifies the necessity and uniqueness of our benchmark-
ing method. Section 3 introduces our benchmark method in
details. Section 4 conducts a case study on TF Model Zoo
and various software-hardware co-designs. Finally, Section 5
concludes this paper.

2 Motivation: Why Another Benchmark?
Serving a similar purpose as our work, Fathom [1] is a
benchmark suite composed of diverse and representative
deep learning applications with detailed performance anal-
ysis. BenchIP [15] is another similar benchmark, including
both a macro-benchmark suite composed of different applica-
tions and a micro-benchmark suite composed of frequently
used tensor operators.Different from them, our benchmarking
methodology targets at capturing end-to-end application-to-
hardware characters to guide architecture design for state-of-
the-art NN workloads. Compared with Fathom and BenchIP,
our benchmark method is superior in two main aspects.
Flexible with updates and customizations: We propose
a benchmarkingmethodology,not simply a benchmark suite.
By doing this, we are subject to updates due to the rapid de-
veloping NN algorithms. Statics [15] have shown that within
one year, the NN models proposed in top tier conference
doubles. For a fixed benchmark suite, it is difficult to know
whether we need to extend the suite when a new model ap-
pears,. In addition, most of the accelerators target a certain
application scenario (e.g., autonomous car), instead of a gen-
eral NN processor. A single one-for-all benchmark suite does
not adequately address these needs. Instead, we generate
different suites according to the user customized candidate
application pool.

SW/HW co-design: Our benchmark method is the first for
accelerators with a comprehensive awareness of software-
hardware co-designs. Although BenchIP [15] includes sparse
models, such as Sparse VGG, into their application set as rep-
resentative workloads, these considerations are insufficient
due to two reasons. First, pruned models are very similar
to their original models in their work. For example, Sparse
VGG performs very similar to VGG in terms of extracted
performance features, making it redundant. Second, their
sparsity benchmark is impossible for considering all model
compression techniques. For example, structural sparsity is
not covered.

3 Benchmarking Methodology
An overview of our benchmarking method is shown in Fig-
ure 1a. The rest of this section will introduce the three stages
of our benchmark method in detail.

3.1 Application Set Selection
In the first stage, application set selection, we select diverse
and representative NN applications out of an application
candidate pool which includes the applications of user’s in-
terests. The process of this stage is shown in Figure 1b. To
understand the similarity among these applications, we de-
fine the performance feature of an NN application as the
time breakdown on different classes of operators. We con-
duct operator-level analysis and cluster operators from the
application candidate pool. Then, we extract application fea-
tures according to operator clusters and the profiling results
of time breakdowns on different classes of operators. Finally,
the original application set composed of diverse and repre-
sentative workloads can be selected according to extracted
application features.
Operator-level Analysis: Our operator-level analysis first
extracts all operators from applications in the application
candidate pool. Then, we analyze operator features key to
the architecture designs. Finally, we cluster these operators.
The performance feature of an operator is depicted from the
following two perspectives.
Locality: This metric is defined as the amount of data

needed by an operator divided by the number of scalar arith-
metic computations it needs. The amount of data needed
by an operator is equal to the sum of input tensor size and
output tensor size. This metric reflects both the temporal lo-
cality and spatial locality in an ideal memory system where a
cache hit will occur if the same location was accessed before.
The lower this metric is, the better locality this operator has.

Parallelism: This metric is defined as the degree of paral-
lelism in scalar arithmetic computations regardless of hard-
ware resources. This metric reflects the parallelism of compu-
tations in terms of data dependency. The higher this metric
is, the higher parallelism this operator has.
Application-level Analysis: We define the performance
feature of an application as the time breakdown on different
operator clusters obtained by the operator-level analysis. We
denote the number of operator clusters as n. Specifically, the
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(a) Overview.
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(b) Application set selection process. (c) Hardware evaluation.

Figure 1. Benchmark method.

performance feature is denoted as ®f = (R1,R2, ...,Rn) where
Ri represents the percentage of the elapsed time spent in
the i-th class operators. We profile each application from the
application candidate pool on the baseline hardware, either
CPU or GPU, to obtain its time spent in each operator class.
After these two level analysis, we select representative

applications out of the application candidate pool to build
the original application set.

3.2 Benchmark Suite Generation
In the second stage, benchmark suite generation, we pro-
vide interfaces for users to customize their NN compression
techniques to generate the final benchmark suite. Each ap-
plication from the original application set is a computation
graph. To customize different NN model compression tech-
niques, we provide interfaces for the users to specify the data
type of tensors in this computation graph. Users can define
and import model compression methods, and change the
information of operators and tensors to generate the final
benchmark suite according to their software-level studies in
the training stage. At the end of this stage, we obtain the final
test set of applications composed of quantized and pruned
NN models for evaluations.

3.3 Hardware Evaluation
In the final stage, the hardware evaluation, we evaluate the
generated benchmark suite on accelerator designs. Although
this stage can be completed by users with detailed simula-
tion results of accelerators, we build a system-level simulator
for fast performance estimation in the initial architecture
design stages to provide high-level guidelines for accelerator
designs. Our system-level simulator evaluates accelerators
on the generated benchmark suite by using the performance
models of the accelerator, the host, and the interconnection
between the accelerator and the host. The inputs and out-
puts of our system-level simulator are shown in Figure 1c.
For each application in the generated benchmark suite, our
simulator schedules operators into either the accelerator or
the host by a first-come-first-serve scheduling algorithm.
When an operator is not supported by the accelerator, it

(a) Operators from the pool. (b) Operator clusters.
Figure 2. The distribution of operator performance features.

will be launched into the host with subsequent data transfer
between the accelerator and the host.

4 Case Study: From TensorFlow Model Zoo
to a Benchmark Suite

To demonstrate the usage of our benchmark method, we in-
troduce a case study of benchmarking general NN inference
applications. To this end, we set the TensorFlow (TF) Model
Zoo [4] (with 57 NN models and 224,563 operators) as the
application candidate pool, and hence conduct an extensive
study. This section follows the three-step process introduced
in Section 3. In addition, we conclude several observations
and architecture design guidelines from these case studies
and show the superior of our methodology.

4.1 Application Set Selection
As the first step of our analysis flow, we apply the operator-
level analysis to all applications from TensorFlow Model
Zoo [4]. The result distribution of operator features is shown
in Figure 2a. We use the k-means method in this case study
resulting in three operator clusters which are shown in Fig-
ure 2b. Then, we get into the application-level analysis
part. The application performance feature in this case study
is denoted as ®f = (R1,R2,R3), where R1, R2, and R3 represent
the time breakdown of an application into three operator
clusters. The performance feature distributions measured on
CPU and GPU are shown as Figure 3a and 3b,where x-axis
stands for R2, y-axis stands for R3, and R1 = 1 − R2 − R3
because R1 + R2 + R3 = 1. Finally, we select ten applications
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(a) CPU (b) GPU (c) Selected applications
Figure 3. The distribution of application features.

Table 1. Brief descriptions for ten applications selected into
the original application set.

Application Description
textsum [12] Text summarization
skip_thoughts [9] Sentence-to-vector encoder
pcl_rl [10] Reinforcement learning
entropy_coder [7] Image file compression
mobilenet [6] Image classification
inception_resnet_v2 [5, 14] Image classification
image_decoder [16] Image file decompression
rfcn_resnet101 [3] Object detection
faster_rcnn_resnet50 [11] Object detection
vgg16 [13] Image classification

with features evenly distributed along the line R2 + R3 = 1
to come up with the benchmark suite, NNBench-X. The dis-
tribution of these ten applications are shown in Figure 3c.
Brief descriptions for these ten applications can be found in
Table 1.
Insights of the analysis during benchmarking. Wemake
several observations from the operator-level analysis (Fig-
ure 2a-2b). First, convolution and matrix multiplication oper-
ators are similar to each other, and most of them have good
localities with moderate parallelism for scalar arithmetic
computations. Second, all element-wise operators are the
same in terms of the parallelism while the computation in-
tensity on each tensor element can vary significantly. Third,
operators with the same or similar functionalities can have
very different performance features, such as reduction and
pooling operators.

For the application-level analysis in Figure 3a-3b, we sum-
marize the following insights. First,Conv,MatMul, and Element-
wise operators take up a majority of the application time in
most of the applications, since most of the applications dis-
tribute near the line R2 + R3 = 1. Second, comparing GPU
with CPU, GPU is more likely to be bounded by R1, due to
its more powerful computing resource and higher memory
bandwidth. In addition, R3 takes a larger percentage on GPU,
indicating there are opportunities for GPU memory system op-
timization. Third, we have more findings when considering
the application scenarios. Most CV applications are bounded
by operations from R2 (mostly Conv and MatMul). On the
contrary, most NLP applications are bounded by operations

from the R3 (mostly element-wise operators). This indicates
that memory centric computing architectures can be helpful
for these NLP applications.

4.2 Software-Hardware Co-design Evaluation
We need the benchmark generation step (Section 3.2) after
application selection, in order to plug-in the NN compression
setup. This step is user customized. According to our eval-
uation target, we generate our benchmark suite with three
configurations: no compression (for GPU), quantized 16-bit
fixed-point (for DianNao), and 16-bit fixed-point quantized
and 90%/95% pruned (for Cambricon-X). Finally, according
to performance results presented in the original papers, we
derive an analytical model based on the Roofline model to
estimate the performance of each supported tensor operators
on accelerators. Results on the GPU are profiled and mea-
sured from the execution on a real machine. Our simulation
results are shown in Figure 4.
Insights from the result. We make the following observa-
tions from Figure 4. First, GPU can benefit these applications
with a higher R2 ratio in their performance features. These
applications are usually computation bound. Since applica-
tions on the x-axis are ordered by the increasing order of R2,
applications closer to the right direction along x-axis spend
more time in the second cluster operators, of which most are
convolution and matrix multiplication operations. As shown
in Figure 4a, GPU obtains higher speedups on applications
in the right side of x-axis. Second, near-data computing ar-
chitectures favors applications (mostly NLP related) with a
higher R3 ratio. Figure 4b shows that Neurocube achieves
higher speedups on applications on the left side of x-axis.
Finally, we found that weight pruning is less attractive for NLP
applications than it is for CV applications. Figure 4c shows
comparison of DianNao and Cambricon-X in terms of perfor-
mance benefits from pruning NN model weights.Comparing
Cambricon-X (90%) to DianNao, Cambricon-X benefits from
the reduction of computation and memory workloads due
to pruned models. The results of models with different spar-
sities, Cambricon-X (90%) and Cambricon-X (95%), indicate
that pruning more weights can have slight benefits on mem-
ory bound applications while significant benefits on compu-
tation bound applications.
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Figure 4. The speedups over CPU baseline of applications on (a) GPU without any model compression (b) Neurocube with
models quantized into 16-bit fixed-point (c) DianNao with models quantized into 16-bit fixed-point, Cambricon-X (90%) with
models further pruned 90% weights, and Cambricon-X (95%) with models further pruned 95% weights.

5 Conclusion
In conclusion, we propose a novel benchmarking method
for NN accelerator designs. To evaluate software-hardware
co-designs, our benchmark method is composed of three
stages: application set selection, benchmark suite genera-
tion, and hardware evaluation. To demonstrate the usage of
our benchmarkmethod, we conduct a case study of designing
NN accelerators for general NN applications. We analyze ap-
plications from the TensorFlow Model Zoo and observe that
applications from the same application domains have simi-
lar bottlenecks. Moreover, we study several state-of-the-art
software-hardware co-designs, including accelerator designs
for quantized and pruned NN models. From our case studies,
we observe that computation-centric and memory-centric
architectures can have different benefits for different applica-
tion domains. Also, we find that pruning NNmodels provides
little benefit on memory-bound applications. Through our
case studies and observations, we are convinced that our
benchmark method is practical and feasible to provide in-
sightful guidance to NN accelerator designs.
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