On Merging MobileNets for Efficient Multitask Inference

Cheng-En Wu, Yi-Ming Chan, and Chu-Song Chen

Institute of Information Science, Academia Sinica, Taiwan

MOST Joint Research Center for AI Technology and All Vista Healthcare

Outline

- Introduction
- Related Work
- Merging MobileNets
- End-to-end Fine-Tuning
- Experiments
- Conclusion

Introduction

- Deep neural networks got success in computer vision, medical imaging, and multimedia processing.
- We usually train different networks for different tasks to make them behave well for each specific purpose.
- In practical applications, however, it is common to handle multiple tasks simultaneously, resulting in a high demand for resources.
- It becomes a crucial problem to effectively integrate multiple neural networks in the training and inferencing stage.

Introduction

- To reduce the computational cost, compact network architectures are developed
 - MobileNet [Howard et al., 2017]
 - ShuffleNet [Zhang et al., 2018]
 - XNOR-Net [Rastegari et al., 2016]
- Although ShuffleNet or XNOR-Net are compact and efficient, their accuracy drop a lot.
- MobileNet is one of the best model with balanced speed and accuracy, and thus is chosen as our backbone networks.

- Multi-task Deep Models
 - In [1], Multi-Model architecture is introduced.
 - Convert different inputs by encoder
 - Consider complex short cut connection
 - Decode multiple tasks with a decoder
 - In [2], representation is aligned to share across modalities.
- Nevertheless, the "the-learn-them-all" approaches pay cumbersome training effort and intensive inference complexity.

 L. Kaiser *et al.*, "One Model To Learn Them All," *CoRR*, vol. abs/1706.05137, 2017.
Y. Aytar, C. Vondrick, and A. Torralba, "See, hear, and read: Deep aligned representations," *arXiv preprint arXiv:1706.00932*, 2017.

 In our previous work [1], our system merged well-trained models using vector quantization technique.

[1] Y.-M. Chou, Y.-M. Chan, J.-H. Lee, C.-Y. Chiu, and C.-S. Chen, "Unifying and merging well-trained deep neural networks for inference stage," in *Proceedings of the 27th International Joint Conference on Artificial Intelligence*, 2018, pp. 2049-2056

- Although our previous work can simultaneously achieve model speedup and compression with negligible accuracy drop, the modified layers are not supported by deep learning frameworks like TensorFlow or pyTorch, etc.
 - The modified layers require 1×1 convolutions and extra table lookups with value summations.
 - Currently, it is achieved with "hand-made" C++ code under CPU mode only.
 - Only basic layer operations (for AlexNet, and VGG16) are supported right now.
- On the contrary, this work can take the advantages of TensorFlow to merge two networks (MobileNet).

Merging MobileNets

- Naïve solution (baseline)
 - Directly train a shared network with two different output layers.

Easy to implement but initialization of weight may be biased.

On Merging MobileNets for Efficient Multitask Inference

Merging MobileNets

- "Zippering" Process
 - Iteratively merge two networks from the input to output.
 - Merge and initialize the layer.
 - Calibrate merged weight to restore the performance.

Merging MobileNets

- Implementation Details
 - Only point-wise convolution layers in MobieNet architecture are merged, because
 - The computational cost of point-wise convolution is much greater than that of depth-wise convolution layer.
 - The depth-wise convolution serves as main spatial feature extractor.

Depth-wise separable convolution in MobileNet

Weight Initialization and Calibration

- Weight initialization is important for training performance
- For merging two MobileNets A and B, potential solutions are:
 - Initialized by W_A
 - Initialized by W_B
 - Random
 - · Initialized by arithmetic mean of each filter of the layer

$$\boldsymbol{\mu}_{i} = \frac{\boldsymbol{W}_{A_{i}} + \boldsymbol{W}_{B_{i}}}{2}, i = \{1, \dots, C\}$$

where *C* is number of output Channel

Simple, but effective!

Weight Calibration Training

- Original models serve as teacher networks
 - When applying the input x_I to the model A (or B), the output of every layer in the merged model should be close to the output of the associated layer in A (or B)
- Two types of minimization terms in calibration training
 - Classification (or regression) error in the original tasks A and B.
 - Layer-wise output mismatch error
- L₁ loss is used
- · Student (merged network) can learn well even with few iterations.
- Implemented using Tensorflow framework.

- Datasets
 - ImageNet: General image classification
 - DeepFashion: Clothing classification
 - CUBS Birds: Birds classification
 - Flowers: Flowers classification

Name	Classes	Training Set	Testing Set
ImageNet	1000	1,281,144	50,000
DeepFashion	50	289,222	40,000
CUBS Birds	196	5,994	5,794
Flowers	102	2,040	6,149

Merge of Flower and CUBS MobileNets

Top-1 Classification Accuracy in CUBS Birds Dataset

- Merge of ImageNet and DeepFashion
 - Accuracy and speedup on DeepFashion dataset

- Convergent speed of different initialization method
 - Merged of DeepFashion and ImageNet
 - Loss on DeepFashion dataset

 Details of speedup, compression rate, and accuracy of merging ImageNet and DeepFashion or CUBS and Flowers.

Merged Layer	Comp.	Speedup	Runtime memory usage Comp.	Acc.(%) (ImageNet ¹)	Acc.(%) (DeepFashion ¹)	Acc.(%) (CUBS ²)	Acc.(%) (Flowers ²)
0	1.000	1.00	1.00	71.02	66.21	68.01	91.70
1(First)	1.000	1.08	1.09	70.55	66.24	67.58	91.63
1~2	1.002	1.13	1.14	70.22	66.17	67.50	91.33
1~3	1.004	1.21	1.19	69.65	65.95	67.48	90.82
1~4	1.009	1.24	1.23	69.46	65.59	67.40	91.02
1~5	1.020	1.30	1.27	68.94	65.85	66.63	91.18
1~6	1.042	1.33	1.28	68.53	65.31	66.82	90.75
1~7	1.089	1.37	1.30	68.25	64.85	66.40	90.53
1~8	1.140	1.42	1.32	67.75	64.81	65.77	90.16
1~9	1.196	1.48	1.34	67.34	64.75	65.43	89.74
1~10	1.258	1.53	1.37	66.66	63.95	64.55	88.40
1~11	1.258	1.53	1.39	65.70	63.34	62.82	86.66
1~12	1.258	1.53	1.40	64.35	61.89	60.02	84.00
1~13(All)	1.258	1.53	1.41	61.63	56.12	55.53	80.99

Conclusion

- We present a method that can merge CNNs into a single but more compact one.
- The "zippering-process" of merging two architecture identical MobileNet is proposed.
- The simple-but-effective weight initialization can shorten fine-tune time to restore the performance.
- Experimental results show that the merged model can be take the advantage of public deep learning framework with satisfactory speedup and model compression.
- Future work will be the merging of different network architecture.

