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Energy-Efficient Processing of DNNs

A significant amount of algorithm and hardware research
on energy-efficient processing of DNNs

Proceedlngs IEEE

V. Sze, Y.-H. Chen, Hardware Architectures for
T-J Yang J. Emer Deep Neural Networks

“Efficient Processing of

Deep Neural Networks: ISCA Tutorial

A Tutorial and Survey,” June 22, 2019

Proceedings of the |EEE, \:stﬁs::fuly riss. mit.edu/tutorial. htm|
Dec. 2017 llii" =55 <InVIDIA.

http://eyeriss.mit.edu/tutorial.html

We identified various challenges to existing approaches
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Design of Efficient DNN Algorithms

* Popular efficient DNN algorithm approaches

Network Pruning Compact Network Architectures

before pruning after pruning

pruning
synapses

-->

pruning
neurons

... also reduced precision

* Focus on reducing number of MACs and weights
* Does it translate to energy savings and reduced latency?
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Data Movement is Expensive
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ALU fetch data to run
a MAC here

Normalized Enerqy Cost
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* measured from a commercial 65nm process

Energy of weight depends on memory hierarchy and dataflow




Energy-Evaluation Methodology

%

DNN Shape Configuration
(# of channels, # of filters, etc.)

Hardware Energy Costs of each
MAC and Memory Access
|

# acc. at mem. level 1

Memory # acc. at mem. level 2
Accesses :
Optimization # acc. at mem. level n Eqata
#of MACs  [EZSAVNS Ecomp S
Calculation
v
DNN Weights and Input Data Energy T -
- 1 >
[0.3,0,-04,0.7,0,0,0.1, ...] ZITIE
Tool available at: https://energyestimation.mit.edu/ DNN Energy Consumption
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Bl Energy Estimation Tool

Website: https://energyestimation.mit.edu/

Input DNN Configuration File

Deep Neural Network Energy Estimation Tool Layer_Index,Input_Feature_Map,Output_Feature_Map,Weight,Computation
1,161226686.785535,323273662,88858340.625,58290651
2,63540403.7543396,19104256.6840292,4770357.50868125,3263307.50868125
3,26787638.0555562,39583335.5555542,3272222.77777708,2285942.777777088
4,26018817.2746958,48841502.8019458,15927826.1926356,7847418.086763958
This Deep Neural Network Energy Estimation Tool is used for evaluating and designing energy-efficient deep neural 5,62285856.8236438,49433953.294575,4188476.6472875,3227376.6472875
networks that are critical for embedded deep learning processing. Energy estimation was used in the development of 6,27267689.7685187,45381705.7407417,3740581.20370417, 2666586.20370417
the energy-aware pruning methed (Yang et al., CVPR 2017), which reduced the energy consumption of AlexNet and 7,26787131.0480146,48586492.3413917,16216779.2956958,8136371.17069583
GoogleNet by 3.7x and 1.6x, respectively, with less than 1% top-5 accuracy loss. This website provides a simplified

version of the energy estimation tool for shorter runtime (around 10 seconds).

Overview

Input Output DNN energy breakdown across layers
To support the variety of toolboxes, this ool takes a single network configuration file. The network configuration file is 8
a txt file, where each line denotes the configuration of a CONV/FC layer. The format of each line is: =10 . = : :
I \nput Feature Map
height nChannels nZeroEntries y  bottom right [ Output Feature Map
wnd\h nMaps()rFtltﬁ bitwidth x top Ieft [0 Weight
L Computation
2,27, 27 96, 44 3.5731e+05,16,5,5,48,256,0,16,27, 27, 256,44, 6.623e406, lsl,ll g G A 2 2
Ll I Il J
Layer_Index Conf_IfMap Conf_Filt Conf_OfMap Stride  Padding

Laver Index: the index of the layer, from 1 to the number of layers. It should be the same as the line number.

Conf IfMap, Conf Filt, Conf OfMap: the configuration of the input feature maps, the filters and the output feature
maps. The configuration of each of the three data types is in the format of "height width number_of _channels
number_of maps_or_filts number_of zero_entries bitwidth_in_bits”.

Stride: the stride of this layer. Itis in the format of "stride_y stride_x".

Pad: the amount of input padding. It is in the format of "pad_top pad_bottom pad_left pad_right".

Therefore, there will be 25 entries separated by commas in each line.

Normalized Energy Consumption

Running the Estimation Model
After creating your text file, follow these steps to upload your text file and run the estimation model:

1. Check the "l am not a robot” checkbox and complete the Google reCAPTCHA challenge. Help us prevent spam.

2. Click the "Choose File” button below to choose your text file from your computer.

5 10 15 20 25

3. Click the "Run Estimation Model" button below to uplozad your text file and run the estimation model. Layer Index

i [Yang et al., CVPR 2017] o MILee o
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Key Observations

* Number of weights alone is not a good metric for energy

* All data types should be considered

Computation
10% Input Feature Map

25%

. Weights
Energy Consumption 22%

of GooglLeNet

Mir [Yang et al., CVPR 2017] Y smicgmenrn MTLees ..




Bl Energy-Aware Pruning

Directly target energy and Normalized Energy (AlexNet)
incorporate it into the 45 X10°

optimization of DNNsto | *,
provide greater energy savings 35
3

e Sort layers based on energy and 2.5 2.1x 3.7x

prune layers that consume most 2
energy first 1.5
* EAP reduces AlexNet energy by 1
3.7x and outperforms the O'g

previous work that uses Ori. Magnitude  Energy Aware
magnitude-based pruning by 1.7x Based Pruning  Pruning

Pruned models available at
http://eyeriss.mit.edu/energy.html

i [Yang et al., CVPR 2017] Y secsierrey MTLeee
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Bl # of Operations vs. Latency

« # of operations (MACs) does not approximate latency well

30
@ .' Similar latency, 3x range in # MACs
& 1 T e 3y
A L P e e SRRt P T ut it E e Ll oS eu TR /
/ .\
= 20 e |. : @ 3
é @' @
> a%l ’
o5 I
- 10 & o0
0%, 0, Similar#MACs,
? ® ~- 2xrangeinlatency
& o
&
0
25 50 75 100 125 150 175

# MACs (Million)

Source: Google (https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)
i st MTLeee ..
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NetAdapt: Platform-Aware DNN Adaptation

* Automatically adapt DNN to a mobile platform to reach a
target latency or energy budget

Use empirical measurements to guide optimization (avoid
modeling of tool chain or platform architecture)

Pretrained

Budget . Platform
Network —— Budget Empirical Measurements
Latency 38 Metric Proposal A Proposal Z FU:
: : Latency 15.6 14.3 =
Energy 10.5 : : : ﬂ
l l Energy 41 46 1
NetAdapt »| Measure
Network Proposals
E \ A B C D i
Adapted | | | | |
Network

[Yang et al., ECCV 2018]
i /n collaboration with Google’s Mobile Vision Team [ sesivsy  MIL9ee, ..
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Improved Latency vs. Accuracy Tradeoff

* NetAdapt boosts the real inference speed of MobileNet
by up to 1.7x with higher accuracy

59%
57%: - @ b,
55% - pe
53%: 4 o— —A ® NetAdapt (This Work)

o® o
D +0.3% accurac
51% - o A ey Y AMobileNet Family

49% - P & & MorphNet
47% | °

o] &— 4
45% - ® A.0.3% accuracy
43% 4 @ 1.6x faster

Top-1 Accuracy

41% 1 ) ] L} L
3 S 7 9 11 13

Latency (ms)

*Tested on the ImageNet dataset and a Google Pixel 1 CPU
Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

[Ty [Yang et al., ECCV 2018] ey MIL®ee
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Problem Formulation

rIr\}atxAccuracy(Net) subject to Resourcej(Net) < Budget;,j =1,---,m
e

l Break into a set of simpler problems and solve iteratively

max Acc(Net;) subject to Resj(Net;) < Res;j(Net;_1) — AR;

. ] —_— 1 cee m
Net; g =

*Acc: accuracy function, Res: resource evaluation function,
AR: resource reduction, Bud: given budget
Budget incrementally tightens Res;j(Net;_1) — AR;;

* Advantages
— Supports multiple resource budgets at the same time

— Guarantees that the budgets will be satisfied because the resource
consumption decreases monotonically

— Generates a family of networks (from each iteration) with different resource
versus accuracy trade-offs

— Intuitive and can easily set one additional hyperparameter (AR; ;)

i [Yang et al., ECCV 2018] LU o
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Simplified Example of One Iteration

3. Maximize

1. Input 2. Meet Budget 4. Output
P 9 :  Accuracy P
: Layer 1
r ------------- | e—————— I
I 100ms  90ms : : Acc: 60% !
: 1 | |
! | | |
Network from 1 : : : Network for
Previous lteration : | : : : Next Iteration
I 1 I I
i I : I I
I : L
!_ _____________ : Selected

Latency: 100ms

Acc: 40% Latency: 80ms
Budget: 80ms : :

Budget: 60ms

it Code to be released at http://netadapt.mit.edu wmcen  MILeee .
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FastDepth: Fast Monocular Depth Estimation

Depth estimation from a single RGB image desirable, due to
the relatively low cost and size of monocular cameras.

RGB Prediction

Auto Encoder DNN Architecture (Dense Output)

upsample  upsample *upsample l upsample @ upsample
| LY layer 1 layer2 @ layer3 layer 4 layer 5
— — — — (R
MobileNet)  7x7x1024 14x14x512 28x28x256 56x56x128  112x112x64 i
224x224x3 . . 224x224x1
(HxWxC) Encoding Layers — Decoding Layers =
J |\ '
Reduction Exbansion
(similar to classification) P

I"lii [Joint work with Sertac Karaman] sretechamerton  MITL99%..
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FastDepth: Fast Monocular Depth Estimation

Apply NetAdapt, compact network design, and depth wise decomposition
to decoder layer to enable depth estimation at high frame rates on an
embedded platform while still maintaining accuracy

8 < >
~ & %
é’ 0.75 A
a‘ * This Work
C 0701 @ Eigen’l4 ~40fps on
8 @® Eigen'l5 (AlexNet) an iPhone
g @® Eigen'l5 (VGG)
0.65 - ® Laina'l6 (UpConv)
Laina'l6 (UpProj)
® Xian'ls
0.60 — . . l

0 25 50 75 100 125 150 175
Frames per second (on Jetson TX2 GPU)

Configuration: Batch size of one (32-bit float)

Mir Models available at hitp.//fastdepth.mit.edu [Wofk*, Ma* et al., ICRA 2019]



http://fastdepth.mit.edu/

Results from Xception

DeeperlLab: Single-Shot Image Parser

W pinms f| B8

Joint Semantic and
Instance Segmentation
(high resolution

input image)
One-shot parsing for efficient processing
Semantic Map
- One backbone for
Fully convolutional, two tasks :
one-shot parsing esult
- $ ) Fully-

(bottom-up approach) PR .. oiiona)

Network

http://deeperlab.mit.edu/
[Yang et al., arXiv 2019]

'"it"  /n collaboration with Google’s Mobile Vision Team RIS ML e e
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DeeperlLab: Efficient Image Parsing

Address memory requirement for large feature map

o Wide MobileNet: Increase kernel size rather than depth

3x3 2> 5x5

SpacetoDepth o Achieves near real-time 6.19
i 1 fps on GPU (V100) with
T 25.2% PQ and 49.8% PC on
Mapillary Vistas dataset

nir http://deeperlab.mit.edu/ Y smicgmenrn MTLees ..
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Many Efficient DNN Design Approaches

Network Pruning

before pruning after pruning

pruning
synapses

-->

pruning
neurons

Reduce Precision

Compact Network Architectures

Channel
Groups G

R R
l 4
S 1
«~— g —
Convolutional Depth-Wise Point-Wise
Layer Layer Layer

R 010011010000000001011/0000000001 00

8-bit fixed [EHYLHHE

Binary E

i [Chen et al., SysML 2018]

No guarantee that DNN algorithm
designer will use a given approach.

Need flexible hardware!

RESEARCH LABORATORY '\n r| [ X X}
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Roofline Model

A tool that visualizes the performance of an architecture
under various degrees of operational intensity

Performance

(ops/sec) slope = BW

/vlnﬂection point

peak
perf.

BW-  Computation-
Limited Limited

optimal«J Operational Intensity
op. int. (ops/byte)
[Williams et al., Comm ACM 2009]

- RESEARCH LABORATORY l\n I l .
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Eyexam: Inefficiencies in DNN Accelerators

An analysis methodology that provides a systematic way of
understanding the performance limits for DNN processors as a function
of specific characteristics of the DNN model and accelerator design

Tightens the roofline model

(MAilcycIe) Slope = BW to only act. PE
................................................. - Step 1: maximum Workload para"elism

.................................................. - Step 2: maximum dataflow parallelism

CUT— —> Number of PEs (Theoretical Peak Performance)

................................................ —> Step 3: # of act. PEs under a finite PE array size

................................................ - Step 4: # of act. PEs under fixed PE array dimen.

-------------------------- —> Step 5: # of act. PEs under fixed storage capacity
S— —> Step 6: lower act. PE util. due to insuff. avg. BW
........................................... —> Step 7: lower act. PE util. due to insuff. inst. BW

> (MAC/data)

peak
perf.

Mir https://arxiv.orq/abs/1807.07928 S L L L S



https://arxiv.org/abs/1807.07928

Existing DNN Architectures

* Specialized DNN hardware often rely on certain properties of
DNN in order to achieve high energy-efficiency

 Example: Reduce memory access by amortizing across MAC array

Activation
Memory
>\Weight
reuse
MAC array
Activation
Y reuse

. RESEARCH LABORATORY
i wrchsen  MTLeee ..
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Limitation of Existing DNN Architectures

 Example: Reuse and array utilization depends on # of channels,
feature map/batch size

— Not efficient across all network architectures (e.g., compact DNNs)

|

Number of filters
(output channels)

|

Number of

input channels

<€

>

<€

MAC array
(spatial

accumulation)

>

feature map
or batch size

|

Number of filters
(output channels)

|

MAC array
(temporal
accumulation)

rle ks
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Limitation of Existing DNN Architectures

 Example: Reuse and array utilization depends on # of channels,

feature map/batch size

— Not efficient across all network architectures (e.g., compact DNNs)

Example mapping for

|

Number of filters
(output channels)

|

depth wise layer

Number of

input channels

<
[

<€

MAC array
(spatial

accumulation)

>

|

Number of filters
(output channels)

L

1
S 1

feature map
or batch size

MAC array
(temporal
accumulation)
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Limitation of Existing DNN Architectures

 Example: Reuse and array utilization depends on # of channels,
feature map/batch size

— Not efficient across all network architectures (e.g., compact DNNs)

— Less efficient as array scales up in size

— Can be challenging to exploit sparsity

|

Number of filters
(output channels)

|

Number of

input channels

<
[

MAC array
(spatial

accumulation)

<€

>

feature map
or batch size

<€ >

I [

Number of filters
(output channels)

|

MAC array
(temporal
accumulation)

rleks
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\.luunllovm!.

ELECTRONICS A microsystema 1



Need Flexible Dataflow

* Use flexible dataflow (Row Stationary) to exploit reuse in any
dimension of DNN to increase energy efficiency and array

utilization
Spatial Accumulation Array Temporal Accumulation Array Eyeriss
A A
M M
v LT TTTTT
<€ > <€ >
C ExF

Example: Depth-wise layer

LR
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Need Flexible NoC for Varying Reuse

* When reuse available, need multicast to exploit spatial data
reuse for energy efficiency and high array utilization

 When reuse not available, need unicast for high BW for weights
for FC and weights & activations for high PE utilization

* An all-to-all satisfies above but too expensive and not scalable

High Bandwidth, Low Spatial Reuse Low Bandwidth, High Spatial Reuse
B .\ .‘ N | ‘ ” //l ............................................ . N ; ; ;
—| PE || PE || PE [ || PE | >|PE|—>|PE|—>|PE|—>|PE|§ |[PE| [PE| [PE] |PE|§ |PE| [PE| [PE] |PE|§
sl i |5 |5 : - - s . i
E“PEEPE—_»PE_)PE 5 >| PE |->| PE [{ PE || PE | E/ [PE] [PE] [PE] [PE] E | [PE] [PE] [PE]
sl T sl T 1 y I |s l y Y 1
S E=| PE |2| PE || PE || PE SH—>|PEj>{PE>{PE|>PE| |8( [PE]| |PE| [PE] |PE| |8]| |[PE| |PE| |PE] |PE]
o : o - " " o T}
| E=[PE[2[PE|>|PE|,[PE| | [—{PE]>[PE}>{PE]>{PE] ' [pe] [pe] [pe] [pe] | | [Pe] [PE] [PE] [PE]

Unicast Networks 1D Systolic Networks 1D Multicast Networks Broadcast Network

Uity [Chen et al., JETCAS 2019] sty MIL22




Hierarchical Mesh

L]

.

O

Cluster Network

Rout
Mesh  C°C° All-to-All
PE All-to-all
Cluster Network
High Bandwidth High Reuse Grouped Multicast Interleaved Multicast
| ! !
L—FI i | T ! - ! e
! | l
c% | 1 O O | | O
(YP | | O O
! | !
| ! \O \b !
O ! 1 O 1O O

[Chen et al., JETCAS 2019] > B
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Eyeriss v2: Balancing Flexibility and Efficiency

® v1.5 & MobileNet = v2 & MobileNet = v2 & sparse MobileNet

Efficiently supports 5 |
‘ 10 9

& o &
@ & &5’ & S *\v
0 O 0

< Q

> o> > o3
@’” SR N
()O ) C;O c)0

-
o

* Wide range of filter shapes

— Large and Compact

Speedup (times)
(%]

-

\'a\

S o S S

* Different Layers
— CONV, FC, depth wise, etc.

Speed up over Eyeriss v1 scales with number of PEs

# of PEs 256 1024 16384

* Wide range of sparsit
5 P y AlexNet 17.9x 71.5x 1086.7x

— Dense and Sparse
GoogLeNet 10.4x 37.8x 448.8x

* Scalable architecture MobileNet | 15.7x | 57.9x | 873.0x

Over an order of magnitude faster and

more energy efficient than Eyeriss v1 [Chen et al., JETCAS 2019]

RESEARCH LABORATORY MTI_ . . .
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Need More Comprehensive Benchmarks

Processors should support a diverse set of DNNs
that utilize different techniques

Example: Network Pruning

after pruning

— Sparse and Dense beforepruning
— Large and Compact network architectures V\§E§fi/: Cvapaes ™
— Different Layers (e.g., CONV and FC)

— Variable Bit-width

ke

V=%

Reduce Precision

cRi1seall 10/100}10}1]ololololololojololjolt/oloololololololol1iop
8-bit fixed SRS SEEE

Binary ﬂ

- -
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Benchmarking Metrics

for DNN Hardware

How can we compare designs?

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer,

“Efficient Processing of Deep Neural Networks: A Tutorial and Survey,”

Proceedings of the IEEE, Dec. 2017

ssssssssssssssss MTLeee
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Metrics for DNN Hardware

* Accuracy

— Quality of result for a given task

* Throughput
— Analytics on high volume data
— Real-time performance (e.g., video at 30 fps)

* Latency

— For interactive applications (e.g., autonomous navigation)

* Energy and Power
— Edge and embedded devices have limited battery capacity

— Data centers have stringent power ceilings due to cooling costs

Hardware Cost
— SSS

= IR cesEAR CH LABORAT ORY ()

'S} avsac



Specifications to Evaluate Metrics

* Accuracy
— Difficulty of dataset and/or task should be considered

* Throughput
— Number of cores (include utilization along with peak performance)

— Runtime for running specific DNN models

* Latency

— Include batch size used in evaluation

* Energy and Power
— Power consumption for running specific DNN models

— Include external memory access

Hardware Cost

— On-chip storage, number of cores, chip area + process technology

= IR cesEAR CH LABORAT ORY ()

'S} avsac



Example: Metrics of Eyeriss Chip

Process Technology @ 65nm LP

TSMC (1.0V) Name of CNN Model Text AlexNet
Total Core Area 12.25 Top-5 error classification # 19.8
(mm2) on ImageNet
Total On-Chip 192 Supported Layers All CONV
Memory (kB) Bits per weight # 16
Number of Multipliers 168 Bits per input activation # 16
Clock Frequency 200 Batch Size # 4
(MHz) Runtime ms 115.3
Core area (mm?) 0.073 Power mwW 278
ACHBIE] Off-chip Access per MBytes 3.85
On-Chip memory (kB) 1.14 Image Inference
/L3 Number of Images # 100
Measured or Measured Tested
Simulated

u - RESEARCH LABORATORY
I I I il OF ELECTRONICS AT MIT M.I,l.r:m..oggogy laboratories
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Comprehensive Coverage

e All metrics should be reported for fair evaluation of design
tradeoffs

* Examples of what can happen if certain metric is omitted:

— Without the accuracy given for a specific dataset and task,
one could run a simple DNN and claim low power, high
throughput, and low cost — however, the processor might
not be usable for a meaningful task

— Without reporting the off-chip bandwidth, one could build
a processor with only multipliers and claim low cost, high
throughput, high accuracy, and low chip power — however,

when evaluating system power, the off-chip memory access
would be substantial

e Are results measured or simulated? On what test data?

mEm . IR RESEARCH LABORATORY
M Qe fstarch LasoratoRy MTLees



Evaluation Process

The evaluation process for whether a DNN system is a viable
solution for a given application might go as follows:

1. Accuracy determines if it can perform the given task

2. Latency and throughput determine if it can run fast enough
and in real-time

3. Energy and power consumption will primarily dictate the
form factor of the device where the processing can operate

4. Cost, which is primarily dictated by the chip area,
determines how much one would pay for this solution

RESEARCH LABORATORY o0
rle pamsionati T e oo
AT NIT massachusotta institute of technology



Summary

 The number of weights and MACs are not sufficient for
evaluating the energy consumption and latency of DNNs

— Designers of efficient DNN algorithms should directly target direct
metrics such as energy and latency and incorporate into the design

* Many of the existing DNN processors rely on certain
properties of the DNN which cannot be guaranteed as the
wide range techniques used for efficient DNN algorithm
design has resulted in a more diverse set of DNNs

— DNN hardware used to process these DNNs should be sufficiently
flexible to support a wide range of techniques efficiently

* Evaluate DNN hardware on a comprehensive set of
benchmarks and metrics

Illil- rLe gESEARCH LABORATORY MTL [ .ngcgy R

F ELECTRONICS AT MIT microsystems tech
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Looking Beyond the DNN

Accelerator for Acceleration

Z.Zhang, V. Sze, “FAST: A Framework to Accelerate Super-Resolution
Processing on Compressed Videos,” CVPRW 2017

SRR IBIPE RESEARCH LABORATORY
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Super-Resolution on Mobile Devices

Low High
Resolution Resolution
Streaming Playback

Use super-resolution to improve the viewing experience of
lower-resolution content (reduce communication bandwidth)

u - RESEARCH LABORATORY lw
I I I il OF ELECTRONICS AT MIT ML e e
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FAST: A Framework to Accelerate SuperRes

SR
15x faster

Compressed V|do

Real-time

A framework that accelerates any SR algorithm by up to
15x when running on compressed videos

i [Zhang et al., CVPRW 2017] Y sericngienion MTLeee ..
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Free Information in Compressed Videos

_ Pixels Block-structure  Motion-compensation
Compressed video

Video as a stack of pixels Representation in compressed video

This representation can help accelerate super-resolution

. RESEARCH LABORATORY
i BRI MTLe®S ...
~
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Transfer is Lightweight

Low-res video

Low-res video
High-res video High-res video

| Transfer allows SR to run on only a subset of frames |

+ L =

Fractional Bicubic Skip Flag
Interpolation Interpolation

(e

skip

The complexity of the transfer is comparable to bicubic interpolation.
Transfer N frames, accelerate by N

rLe RESEARCH LABORATORY MTLeeo

OF ELECTRONICS AT MIT T orGayatae SeohuioloRy leboratoites
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Evaluation: Accelerating SRCNN

PartyScehe RaceHorse BasketballPass
Examples of videos in the test set (20 videos for HEVC development)

PSNR with 4x acceleration PSNR with 16x acceleration
GOP =4 GOP =16
315 31.04 31.04 31 30.65
31 305
3053 29 87 30 29 77
205 29.5
29 29
SRCNN SRCNN with Bicubic SRCNN SRCNN with Bicubic
FAST FAST

4 x acceleration with NO PSNR LOSS. 16 x acceleration with 0.2 dB loss of PSNR
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Visual Evaluation

SRCNN FAST + Bicubic
SRCNN

Look beyond the DNN accelerator for opportunities to accelerate
DNN processing (e.g., structure of data and temporal correlation)

Code released at www.rle.mit.edu/eems/fast

Mir [Zhang et al., CVPRW 2017] Al wicamosron MITL 00O
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http://www.rle.mit.edu/eems/fast

Summary of Key Insights

* Design considerations for co-design of algorithm
and hardware

— Incorporate direct metrics into algorithm design for
improved efficiency

— Diverse workloads requires a flexible dataflow and NoC to
exploit data reuse in any dimension and increase core
utilization for speed and scalability

* Accelerate deep learning by looking beyond the
accelerator

— Exploit data representation for FAST Super-Resolution

Today’s slides available at www.rle.mit.edu/eems
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