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I thought I would die without seeing…



… these results!

ImageNet Top-5 Error



Better Results à More Complexity

ImageNet Top-5 Error

Number of 
Network Layers

Shallow            10              20              100+         



Many applications require real-time inferencing



This talk: Speeding up Deep Neural Networks

§ Efficient Multi-Scale Architectures
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Feed-Forward Convolutional  Neural Networks

Adapted from Veit et al



Feed-Forward Convolutional  Neural Networks

What happens when we delete a step?
Adapted from Veit et al



Feed-Forward Convolutional  Neural Networks

Adapted from Veit et al



What happens if we delete a layer at test time?

Adapted from Veit et al

CIFAR-10



What happens if we delete a layer at test time?

Adapted from Veit et al

CIFAR-10



Adapted from Veit et al

Why does this happen?



Adapted from Veit et al

Why does this happen?



Adapted from Veit et al

Deletion of a Layer



Adapted from Veit et al

Deletion of a Layer

All paths are affected

Only half of the paths are affected



Adapted from Veit et al

Can we delete a sequence of layers without performance drop?
This experiment [Veit et al, 2016]:
§ Layers were dropped randomly
§ Global dropping strategy for all images



BlockDrop: Dynamic Inference Paths in 
Residual Networks

Zuxuan Wu*, Tushar Nagarajan*, Abhishek Kumar, Steven Rennie, 
Larry S. Davis, Kristen Grauman, Rogerio Feris

* Authors contributed equally

CVPR 2018



BlockDrop: Dynamic Inference Paths in Residual Networks 

Dog

Do we really need to run 100+ layers / residual blocks of a neural 
network if we have an “easy” input image?

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks 

Dog

(Veit et al., NIPS 16)

“Dropping some blocks during testing 
doesn’t hurt performance much”
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[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks [CVPR 2018]
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How to determine which blocks to drop depending on the input image?

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks [CVPR 2018]
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Canonical, front-facing pups? Use 8 blocks“Predict which blocks to drop conditioned on the input 
image, in one shot, without compromising accuracy”

Our Idea: BlockDrop

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks 

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks [CVPR 2018]

Policy Network Training through Reinforcement Learning

[Wu & Nagarajan et al, CVPR 2018]
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[Wu & Nagarajan et al, CVPR 2018]

BlockDrop: Dynamic Inference Paths in Residual Networks 

§ Reward function takes into account both accuracy and block usage
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[Wu & Nagarajan et al, CVPR 2018]

BlockDrop: Dynamic Inference Paths in Residual Networks 



BlockDrop: Dynamic Inference Paths in Residual Networks 

Results on ImageNet:

20% - 36% computational 
savings (FLOPs)

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks 
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[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks 

Block usage in neural networks agrees 
with our perception of difficulty

[Wu & Nagarajan et al, CVPR 2018]



Extension of BlockDrop: Adaptive 
Computation  for Transfer Learning



[Guo et al, CVPR 2019]

Data Efficiency: Transfer Learning

§ Fine-tuning is arguably the most widely used approach for transfer 

learning

§ Existing methods are ad-hoc in terms of determining where to fine-
tune in a deep neural network (e.g., fine-tuning last k layers)

§ We propose SpotTune, a method that automatically decides, per 

training example, which layers of a pre-trained model should have 

their parameters frozen (shared with the source domain) or fine-

tuned (adapted to the target domain)



[Guo et al, CVPR 2019]



SpotTune: Transfer Learning through Adaptive Fine-Tuning

[Guo et al, CVPR 2019]



SpotTune automatically 
identifies the right fine-
tuning policy for each 

dataset, for each training 
example. 

SpotTune: Transfer Learning through Adaptive Fine-Tuning

[Guo et al, CVPR 2019]

Fine-Tuning Policy Visualization



[Guo et al, CVPR 2019]

SpotTune: Transfer Learning through Adaptive Fine-Tuning

SpotTune sets the new state of the art on the Visual Decathlon Challenge
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SIFT Features [Lowe, 1996]Wavelets [Daubechies/Mallat/etc. 90s] MS-CNN [Cai et al, 2016]

Feature Pyramid Networks [Lin et al, 2017
MSDNet [Huang et al, 2018]

Many more!

Multi-Scale Feature Representations



Problem

§ Image processing at multiple resolutions usually leads to additional 
computational time

§ Goal: Speed up inferencing while maintaining accuracy

à How to design an efficient multi-scale network 
architecture?



Big-Little Net

§ A multi-branch network that:

1) has different computation complexities for each branch/scale 

2) fuses different scales at multiple levels of the network 

in order to achieve the best accuracy-efficiency trade-off

[Chen et al, ICLR 2019]



S/2 S/2 S/2

I TaskM

S S S

M M …

I: input; M: merge operator
S: original resolution of input, S/2: half resolution of input 

Big-Little Net
Big-Little Net Module

Big-Branch: expensive network on low-res

Little-Branch: efficient network on high-res

[Chen et al, ICLR 2019]



Big-Little Net Module
C Kernels

C/⍺ Kernels

L Layers

S/2

S

L/β Layers

Big 
Branch

Little 
Branch

Two parameters control the complexity of the Little Branch: 
⍺ (network width) and β (network depth)
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[Chen et al, ICLR 2019]

Experimental Results

§ Image Classification:
§ Dataset: ImageNet-1K
§ Backbone network: ResNet or ResNeXt

§ Speech Recognition:
§ Dataset: Switchboard
§ Backbone network: ResNet



Model (bL-model, !=2, "=4) Top-1
Error

FLOPs
(109)

Params
(106)

GPU
speedup

ResNet-101 21.95% 7.80 44.54 -

bL-ResNet-101 21.80% 3.89 (2.01×) 41.85 1.33×

ResNet-152 21.51% 11.51 60.19 -

bL-ResNet-152 21.16% 5.04 (2.28×) 57.36 1.49×

ResNeXt-50 (32×4d) 22.20% 4.23 25.03 -

bL-ResNeXt-50 (32×4d) 21.60% 3.03 (1.40×) 25.03 1.26×

ResNeXt-101 (32×4d) 21.20% 7.97 44.17 -

bL-ResNeXt-101 (32×4d) 21.08% 4.08 (1.95×) 41.51 1.59×

ResNeXt-101 (64×4d) 20.73% 15.46 83.46 -

bL-ResNeXt-101  (64×4d) 20.48% 7.14 (2.17×) 77.36 1.98×

SEResNeXt-50 (32×4d) 21.78% 4.23 27.56 -

bL-SEResNeXt-50 (32×4d) 21.44% 3.03 (1.40×) 28.77 1.33×

SEResNeXt-101 (32×4d) 21.00% 7.97 48.96 -

bL-SEResNeXt-101 (32×4d) 20.87% 4.08  (1.95×) 45.88 1.60× [Chen et al, ICLR 2019]

Experimental Results: ImageNet



Experimental Results: Comparison with CNNs based on 
ResNet and ResNeXt on ImageNet

[Chen et al, ICLR 2019]



[Chen et al, ICLR 2019]

Experimental Results: Comparison with SOTA networks in 
accuracy and GPU runtime on ImageNet



Dataset: Switchboard 

Model FLOPs (109) Params (106) WER Avg Hub5 Hub5 CH

ResNet-22 1.11 3.02 14.67% 11.15% 18.17%

bL-ResNet-22 (!=4, "=1) 0.68 3.15 14.72% 11.24% 18.18%

bL-ResNet-22 (!=4, "=2) 0.66 3.11 14.47% 10.95% 17.95%

bL-ResNet-22 (!=4, "=3) 0.65 3.10 14.66% 11.25% 18.05%

bL-ResNet-22 (!=2, "=3) 0.77 3.07 14.46% 11.10% 17.80%

Experimental Results: Speech Recognition

[Chen et al, ICLR 2019]



SlowFast Networks [Feichtenhofer et al, 2019]Drop an Octave [Chen et al, CVPR 2019]

Recent work related to Big-Little Net



Summary
§ Efficient Multi-Scale Architectures: Big-Little Net
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§ Adaptive Computation: BlockDrop

What’s Next?
§ Big-Little Net with dynamic scale selection
§ Neural architecture search: compact multi-task networks using Gumbel-Softmax
§ Extension to Video Understanding



Thank you !
§ C. Chen, Q. Fan, N. Mallinar, T. Sercu and R. S. Feris. "Big-Little Net: An Efficient Multi-

Scale Feature Representation for Visual and Speech Recognition."ICLR 2019

§ Z. Wu*, T. Nagarajan*, A. Kumar, S. Rennie, L. Davis, K. Grauman and R. S. Feris. 
"BlockDrop: Dynamic Inference Paths in Residual Networks." CVPR 2018, Spotlight 
(* equal contribution)

§ Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing and R. S. Feris. “SpotTune: Transfer 
Learning Through Adaptive Fine-Tuning” CVPR 2019


