
Efficient compiler code generation for Deep Learning
Snowflake co-processor

Andre Xian Ming Chang
FWDNXT

achang@fwdnxt.com

Aliasger Zaidy
FWDNXT

azaidy@fwdnxt.com

Eugenio Culurciello
FWDNXT

euge@fwdnxt.com

ABSTRACT

Deep Neural Networks (DNNs) are widely used in various

applications including image classification, semantic seg-

mentation and natural language processing. Various DNN

models were developed to achieve high accuracy on differ-

ent tasks. Efficiently mapping the workflow of those models

onto custom accelerators requires a programmable hard-

ware and a custom compiler. In this work, we use Snowflake,

which is a programmable DNN targeted accelerator. We

also present a compiler that correctly generated code for

Snowflake. Our system were evaluated on various convo-

lution layers present in AlexNet, ResNet and LightCNN.

Snowflake with 256 processing units was implemented on

Xilinx FPGA, and it achieved 70 frames/s for AlexNet without

linear layers.

CCS CONCEPTS

• Software and its engineering → Compilers; • Hard-

ware→ Hardware accelerators;

KEYWORDS

Deep learning, neural networks, co-processor, compiler

1 INTRODUCTION

DNNs are composed of various stacked layers of multi di-

mensional tensor operations, making them computationally

intensive and power hungry. Supervised learning methods

are two steps process: training and inference. Training is

done once in a while when the user wants to modify the DNN

model to adapt to a new data pattern. Currently, training

requires several iterations and high volume of data. Server

based systems thrive on this type of workload, due to its su-

perior raw performance and storage capacity. On the other

hand, inference phase requires in real time execution and it

doesn’t require high data precision [10]. Inference hardware

accelerators have proliferated, due to the demand of real

time DNN inference on embedded systems. Custom hard-

ware achieves superior performance per power consumed

EMC2, Mar 2018, Williamsburg, VA, USA

making them well-suited for deploying DNNs. Several hard-

ware accelerators that use ASIC or FPGA were developed

[1, 2, 6, 13].

This paper contributes to the field by introducing software

support for Snowflake [4], which is a programmable low-

power accelerator for DNNs. Snowflake architecture was

designed to provide high computational occupancy, as long

as it gets an optimal sequence of instructions. The purpose

of the compiler is to generate correct and efficient code for

Snowflake.

Snowflake with 256 processing units running at 200MHz

was implemented on Xilinx’s ZC706 development board [12].

And we were able to execute AlexNet, ResNet and LightCNN

[5, 7, 9, 11].

2 OVERVIEW

This section presents an overview of convolution layers and

Snowflake’s architecture.

2.1 Convolution

Convolutional Neural Networks (CNNs) are the main type

of DNN for tackling image processing tasks. Convolution

(CONV) is the core computation of CNNs workloads. It has

two operands: 3D input (IN) and 4D weight (W), and it pro-

duces a 3D output (OUT). Each output plane (outP) is the

result of convolving IN with a 3D weight from W. Each 3D

weight (K) is associated with a bias value. In other words, all

values in an output plane has the same bias value. A section

of IN and a respective section of K are multiplied and accu-

mulated to produce a value of OUT. This section dimensions

are: kernel height (kH), width (kW) and input plane (inP).

Most CONV layers have inP > kH × kW . Thus, arrang-

ing IN and W along z-axis first exhibits better data locality.

This section is then strided to produce the next output value.

CONV also defines padding on the corners of the IN. A good

visualization of CONV is shown in [3].

2.2 Snowflake

Snowflake was presented in [4]. For readers’ convenience,

an overview of Snowflake is presented in this section.

Snowflake’s primary compute engine is a 16 bit multiply

and accumulate units (MACs). The data precision of choice

24

2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications

978-1-5386-7367-6/18/$31.00 ©2018 IEEE
DOI 10.1109/EMC2.2018.00013



EMC2, Mar 2018, Williamsburg, VA, USA Andre Xian Ming Chang, Aliasger Zaidy, and Eugenio Culurciello

is fixed point Q8.8. 16 MACs form a vector MAC (vMAC).

A compute unit (CU) is composed of 4 vMACs and a vector

max-pool unit (vMAX). 4 CUs are grouped to form a compute

cluster (CC). Every vMAC in a CU shares has one shared

maps buffer (MBuf) and each vMAC has a private kernel

buffer (WBuf). Snowflake instructions are stored in the in-

struction buffer (I$). Snowflake’s control unit is a pipeline

that executes those custom instructions. The control unit

provides 32× 32 bit scalar registers. Each CC has its own

control unit and I$. The implemented Snowflake has 512 KB

of WBuf and 256 KB of MBuf and 4 KB of I$. Snowflake with

256 processing units running at 187MHz was implemented

on AC510, which has HMC memory and Xilinx’s KU060 [8].

Snowflake’s custom ISA has 13 different 32 bit instruc-

tions. The details on each instruction is presented in [4].

They mainly implement 4 functionalities: data movement,

compute, flow control and memory access. The most relevant

instructions are: MACV, MAX, VMOV, LD, TMOV and scalar

instructions.

MACVmultiplies and accumulates a sequence of data from

MBuf and WBuf. This sequence is called a trace. In CONV,

a trace is usually kW × inP . MAX compares a block of data

fromMBuf with another block of data. MACV andMAX store

results back to MBuf. VMOV loads the MACs with a initial

value. It sets the initial value of the accumulation. LD sends

data from main memory to Mbuf, WBuf or I$. There are two

LD modes: broadcast or individual buffer loads. This allows

the processing choice of same weights and different maps, or

same maps with different weights. TMOV sends data from

MBuf to main memory. There are scalar instructions MOV,

ADD, MUL and Branches. Together they implement neces-

sary bookkeeping functionalities: loops, if else conditions,

address increment/decrement and others.

MACV has 2 important modes of operation that were

presented in [4], but it is worth recapitulating here, since

eachMACVmode presents different data access and compute

patterns.

In cooperative mode (COOP), all MACs in one vMACwork

together to produce 1 output value. Each MAC processes a

different inP of K, and the results of all 16 MACs are added

together. Each vMAC produces an different outP, so each

WBuf contains a different K. Using 4 CUs, 16 values are

produced, each belongs to a different outP. COOP mode

needs a contiguous processing length (trace) bigger than

and multiple of 16. Otherwise, independent mode (INDP)

comes to action. In INDP mode, all MACs in one vMAC work

independently on different K to produce 16 different output

values. Thus, 4 vMACs produce 64 output values for different

outP. Each CU in INDP mode has a different row section of

IN. Independent mode is useful when a CONV has small

inP. For example, most models initial layers need to extract

features from an input image of inP = 3 (RGB).

3 CODE GENERATION

The compiler generates a stream of Snowflake’s instructions

given a DNN model defined in ONNX 1. The workflow starts

at reading a ONNX model file using Thnets2. This creates a

list of layers to be ran on Snowflake. Each element in the list

has input size, output size, kernel size, stride, padding and

other parameters.

After parsing a model, code generation distributes the data

and workload to CUs, and creates Snowflake instructions

accordingly. The goal is maximum utilization of all CUs and

their MAC units. In COOP mode, different Ks are loaded to

all 16 vMACs and IN is broad cast to all MBuf. In this case, all

CUs are used to create different values in outP. Most of the

DNN layers have their inP and outP as a multiple of 16. In

INDP mode, the computation flow is different. For example,

consider first layer of AlexnetOWT [7], which is a CONV

with height 224, width 224 and inP 3. Its output height 55,

width 55, outP 64, kW 11, kH 11 and stride is 4 and padding is

2. This CONV is done in INDP mode. Each vMAC produces

16 values corresponding to a different outP, thus each WBuf

have 16 different K. A CU creates all 64 outP, so each CU is

responsible for a different section of the 55 × 55 output area.

In both COOP and INDP mode, maps and weights are

divided into tiles that are sent from memory to MBuf and

WBuf. Each tile involves up to 3 nested loops to produce

an output section: a loop to stride the computation along

y-axis (Y-Loop), a loop to stride x-axis (X-Loop), and a loop

that covers all kH and kW to produce a single output value

(T-Loop). Another two loops to go through all maps and

weight tiles are needed to produce entire output of the layer.

Arranging these loops present different levels of data reuse.

In this work we discuss the arrangement benefits of the last

two loops.

Loop rearrangement is a method that reduces total amount

of data movement by exploiting data reuse, which leads to

memory bandwidth savings. Maps and kernels need to be

partitioned and processed in Mbuf and WBuf sized tiles. All

kernel tiles need to be brought to WBuf for each map tile

(reuse K), leading to repeated kernel loads when the next

map tile is loaded. Alternatively, all map tiles need to be

brought to MBuf for each kernel tile (reuse M). The total

amount of data moved is different depending on kernel/map

load repetition for a particular CONV layer.

Figure 1 shows an example of the generated code for a

CONV layer. Part a) presents a visualization of the code in

part b). The compiler creates the initial loads to MBuf and

WBuf with data for the first set of computations. The load

for the next tile is pre fetched, so that compute and load

are overlapped in Snowflake. Then it creates a kernel loop

1https://github.com/onnx/onnx
2https://github.com/mvitez/thnets

25



Efficient compiler code generation for Deep Learning Snowflake co-processor EMC2, Mar 2018, Williamsburg, VA, USA

LD MBuf //load maps
LD MBuf //pre fetch next load
LD KBuf //load kernels
LD KBuf //pre fetch next load
K-Loop: //loop all kernels

Y-Loop: //produce output rows
T-Loop:

MAC //corner case
Branch T-Loop
X-Loop:

T-Loop:
MAC //common case

Branch T-Loop
Branch X-Loop
T-Loop:

MAC //corner case
Branch T-Loop

Branch Y-Loop
Branch K-Loop
TMOV MBuf to memory // store to memory

Maps Buffer

CU

VMAC

KBuf

VMAC

KBuf

VMAC

KBuf

VMAC

KBuf

a) b)

Load data Compute

…Input

Kernels

x
inP

y

kH

inP

kW

Figure 1: Example of computation of CONV in Snowflake. a) Part of the input and part of kernel are loaded to

Maps Buffer and KBuf. Then each kernel section is multiplied and accumulated through a section of the input to

create output. Corner cases have a different section size that produces a output value. b) Shows an example of the

generated instructions.

Figure 2: Required memory bandwidth by reuseM or reuseK mode for various CONV examples.

(K-loop) to go through all the kernels in KBuf producing

multiple output channels. In this example, there are 2 corner

cases. Each corner case have a different trace area (kW × inP ).
T-Loop multiplies and accumulates all traces to produce a

output value. The common case traces are ran inside of X-

Loop, which strides the traces along the x-axis. The last

corner case has its own T-Loop to create another output

value. This computation row is inside of a Y-Loop, which

strides those instructions along the y-axis. Finally, a TMOV

instruction stores the results back to memory.

After the code generation phase, the last software task

is to run the code on Snowflake. The Configuration regis-

ters are used to send an initial load instruction to populate

Snowflake’s I$ with the first set of instructions. Then the soft-

ware polls an output counter register to check if Snowflake

has finished its computation or not. A python interface was

created so that user can import Snowflake support into their

applications.

4 RESULTS

In this work, Snowflake has 512 KB of WBuf and 256KB of

MBuf and 4KB of I$, with 1 CC running at 200MHz, imple-

mented on Xilinx’s ZC706 development board. The results for

generated instruction for different DNN models are shown

in table 1. These numbers were measured using a Snowflake

with 4 CUs running at 200 MHz. The execution time does not

account for linear layers. This was implemented on Xilinx’s

ZC706 development board, which has a Zynq-SoC XC7Z045

FPGA [12]. 224 × 224 × 3 images was used as input, except

for LightCNN9 [11], which uses 128× 128× 1 images for face
identification.

The compiler took 25 s to generate Snowflake code for

VGG16. And it took 15 s for ResNet50. The compiler was

executed in the Zynq XC7Z045 embedded ARM Cortex-A9

at 666MHz.

26



EMC2, Mar 2018, Williamsburg, VA, USA Andre Xian Ming Chang, Aliasger Zaidy, and Eugenio Culurciello

Table 1: DNN inference time on Snowflake.

Model Time [ms] Frames/s

AlexNet 14.0 71

ResNet18 58.3 17

ResNet34 106.0 9

ResNet50 149.8 6

LightCNN9 28.9 35

4.1 Instruction analysis

The instructions breakdown of each network is shown in

figure 3. As expected the number of bookkeeping instruc-

tions (ADD and MOV) is larger than the number of vector

instructions (LD, MAC, MAX, VMOV and TMOV). ResNet

models have more VMOV instructions, since it has residual

add layers that uses VMOV to do the vector add. The number

of MAX is almost negligible compared to number of MAC

instructions, because CONV layers are the majority in DNNs.

Table 2 shows that majority of CONV layers are executed in

COOP mode, thus most of the layers have inP as a multiple

of 16. LD length is in 64 B granularity, so LD length of 1

transfers 64 B of data. The max of LD length is expected to

be the size of one buffer of the MBuf 32KB/64B = 512. The
MAC trace length is represented with 12 bit so their max

is 4096. CONV layers in the benchmark models don’t have

kW × inP larger than 2048.

0

100000

200000

300000

400000

500000

AlexNet ResNet18 ResNet34 ResNet50 LightCNN9

Nu
m

be
r o

f i
ns

tru
ct

io
ns

tmov

vmov

max

macv

ld

branch

add

mov

Figure 3: Number of instructions break down per DNN

model.

The compiler achieves performance comparable to hand-

crafted instructions as shown in table 3. The results in this

table were measured with an early prototype Snowflake sys-

tem with 1 CU system, running at 142 MHz. In the table,

CONVs parameters are, respectively, input size, kernel size,

input plane, output plane, stride and padding. Auto stands

for compiler generated code and hand is handwritten code.

Table 2: Instruction parameters in different models.

LDmax is largest LD length. MACmax is largest trace

length for a MAC

Model INDP COOP LD max MAC max

AlexNet 96 3652 468 1152

ResNet18 263 14336 336 1536

ResNet34 263 27758 336 1536

ResNet50 535 19079 448 2048

LightCNN9 764 8454 384 576

Auto-generated code has higher instruction count (437more),

but it achieves similar efficiency to hand optimized code. Ef-

ficiency is the ratio between expected time with measured

run-time. Expected time is calculated with equation 1, where

MACunits is total number of MAC units in Snowflake. Each

MAC unit can do 2 Ops per cycle.

Expected_time =
Ops

2.MACunits . f req
(1)

Table 3: Hand optimized code (hand) versus auto-

generated instructions (auto) for someAlexNet layers.

Layer Code Time [ms] Eff. [%]

13x13,3x3,192,384,1,1
Hand 11.11 99.5

Auto 11.08 99.7

13x13,3x3,384,256,1,1
Hand 14.84 99.3

Auto 14.77 99.8

13x13,3x3,256,256,1,1
Hand 9.89 99.3

Auto 9.86 99.6

4.2 Loop rearrangement for bandwidth
constraints

Unlike GPUs and ASIC designs, FPGA accelerators are lim-

ited mostly by their off-chip memory bandwidth. The re-

quired bandwidth for a layer is a ratio between total amount

of data transfered by the expected execution time. The band-

width requirements for some CONV layers are shown in

figure 2. This shows that reuseK leads to lower memory band-

width requirements for the CONVs present in most DNNs.

5 CONCLUSION

A programmable device provides flexibility to implement

different workloads using the same hardware architecture. It

is up to the compiler to generate code that exploits the full

extent of the hardware capabilities. Identifying better code

strategies are especially important for low power accelera-

tors. This work presented Snowflake compiler that generates

27



Efficient compiler code generation for Deep Learning Snowflake co-processor EMC2, Mar 2018, Williamsburg, VA, USA

code for various DNNs and analyses potential code improve-

ments for running DNNs on Snowflake accelerator.

REFERENCES
[1] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. 2017. Neu-

rostream: Scalable and Energy Efficient Deep Learning with Smart

Memory Cubes. arXiv preprint arXiv:1701.06420 (2017).

[2] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial

Architecture for Energy-efficient Dataflow for Convolutional Neural

Networks. SIGARCH Comput. Archit. News 44, 3 (June 2016), 367–379.

https://doi.org/10.1145/3007787.3001177

[3] Vincent Dumoulin and Francesco Visin. 2016. A guide to convolution

arithmetic for deep learning. arXiv preprint arXiv:1603.07285 (2016).

[4] Vinayak Gokhale, Aliasger Zaidy, Andre Xian Ming Chang, and Euge-

nio Culurciello. 2017. Snowflake: An efficient hardware accelerator for

convolutional neural networks. In Circuits and Systems (ISCAS), 2017

IEEE International Symposium on. IEEE, 1–4.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep

Residual Learning for Image Recognition. CoRR abs/1512.03385 (2015).

http://arxiv.org/abs/1512.03385

[6] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav

Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al

Borchers, et al. 2017. In-datacenter performance analysis of a tensor

processing unit. arXiv preprint arXiv:1704.04760 (2017).

[7] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional

neural networks. CoRR abs/1404.5997 (2014). http://arxiv.org/abs/

1404.5997

[8] Micron 2017. AC-510 UltraScale FPGA with Hybrid Memory Cube.

Micron. http://picocomputing.com/wp-content/uploads/2016/01/

AC-510_Product_Brief.pdf

[9] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Con-

volutional Networks for Large-Scale Image Recognition. CoRR

abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

[10] Wonyong Sung, Sungho Shin, and Kyuyeon Hwang. 2015. Re-

siliency of deep neural networks under quantization. arXiv preprint

arXiv:1511.06488 (2015).

[11] Xiang Wu, Ran He, Zhenan Sun, and Tieniu Tan. 2015. A light

CNN for deep face representation with noisy labels. arXiv preprint

arXiv:1511.02683 (2015).

[12] Xilinx 2015. ZC706 Evaluation Board for the Zynq-7000

XC7Z045 All Programmable SoC. Xilinx. http://www.

xilinx.com/support/documentation/boards_and_kits/zc706/

ug954-zc706-eval-board-xc7z045-ap-soc.pdf v1.5.

[13] Chen Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason

Cong. 2016. Caffeine: Towards Uniformed Representation and Ac-

celeration for Deep Convolutional Neural Networks. In Proceedings

of the 35th International Conference on Computer-Aided Design (IC-

CAD ’16). ACM, New York, NY, USA, Article 12, 8 pages. https:

//doi.org/10.1145/2966986.2967011

28


